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Abstract

Salinas provides a massively parallel implementation of structural dynam-
ics finite element analysis, required for high fidelity, validated models used in
modal, vibration, static and shock analysis of weapons systems. This document
provides a users guide to the input for Salinas. Details of input specifications
for the different solution types, output options, element types and parameters
are included. The appendices contain detailed examples, and instructions for
running the software on parallel platforms.
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Salinas

Salinas provides a massively parallel implementation of structural dynamics fi-
nite element analysis. This capability is required for high fidelity, validated models
used in modal, vibration, static and shock analysis of weapons systems. General
capabilities for modal, statics and transient dynamics are provided.

This document describes the input for the Salinas program. Examples of in-
put specifications are scattered throughout the document. Appendix A provides
several full input files. Appendix B provides instructions on invoking Salinas on a
serial UNIX platform. Appendix C details how to execute Salinas on the ASCI-red
machine, janus.

The name for Salinas is taken from a series of ancient Tewa Indian pueblos to the
east of Albuquerque, New Mexico. These pueblos have been a source of culture and
of salt for centuries. They were among the first settlements for Spanish explorers in
the region.

1 Introduction – Input File

The input file contains all the directives necessary for operation of the program.
These include information on the type of solution, the name of the exodus file
containing the finite element data, details of the material and properties within the
element blocks, which boundary conditions to apply, etc. Details of each of these
sections are covered below.

Typically, the input file has an extension of “.inp”, although any extension is per-
mitted. If the “.inp” extension is used, Salinas may be invoked on the input
without specifying the extension.

The input file is logically separated into sections. Each section begins with a keyword
(Solution, BLOCK, etc), and ends with the reserved word end. Words within
a section are separated with “white space” consisting of tabs, spaces, and linefeeds.
Comments are permitted anywhere within the file, and follow the C++ convention,
i.e. a comment begins with the two characters “//” and ends with the end of the
line.1

Except for data within quotes, the input file is case insensitive. The software converts
everything to lower case unless it is enclosed in quotes. Either the single quote ’ or
the double quote " may be used. The quotes may be nested, e.g. ’a string with
"embedded" quotes’, but only with the other style mark.

1To be safe, define comments as “//” followed by a space.



2 1 INTRODUCTION

The input parser supports nested includes. This is done using the #include com-
mand. This is the only command the parser recognizes. Files may be included to
any depth. As an example,

#include english_materials

The #include may occur anywhere on the line (though for readability and con-
sistency we recommend that it be the start of the line). The file name must im-
mediately follow and should NOT be enclosed in quotes. Case sensitivity will be
preserved. Summarizing, a minimum of two files are needed to run Salinas , namely,
a text input file, e.g. example.inp, and an Exodus input file,1 e.g. example.exo,
which contains the finite element model. The finite element model is specified in
example.inp as the geometry file (see section 2.9).

Each of the Salinas input sections is described in the following section.
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2 The Salinas Input File

2.1 SOLUTION

The solution section determines which solution method, and options are to be
applied to the model. The available solution types are shown in Table 1. Relevant
options are shown in Table 3, and are described in section 2.2.

2.1.1 Multicase

All of the solution methods of table 1 may be a part of a multicase solution. This
allows the user to specify multiple steps in a solution procedure. For example, there
can be a static preload, a computation of the updated tangent stiffness matrix, and
a linearized eigen analysis. The syntax for multicase solutions is similar to that
for single cases, but each solution step is delineated by the “case” keyword. In
addition, any of the modal solutions must be preceeded by an eigen analysis and
eigen keywords are no longer recognized as part of the solution.

In a multicase solution, the system matrices (mass, stiffness and damping) will
typically be computed only once. Matrix updates between solutions may be specified
by selecting the tangent keyword (see section 2.1.18).

Multicase Parameters. Many of the solution parameters are specific to a partic-
ular solution type. For example, time step parameters are meaningless in a modal
solution. However, some options apply more generally. These parameters, listed
in Table 2, may be specified either above the case control sections, or within the
section. The specification above the case control section is the default value. Spec-
ifications within the case sub-blocks apply only to that sub-block. In the example
below, the restart options are thus “none” for most subcases, but “read” for the
eigen analysis and auto for the linear transient.2

Multicase Example. In the example which follows, a nonlinear statics compu-
tation is followed by a tangent stiffness matrix update. The updated matrix is
then used in an eigen analysis. Two sets of exodus output files will be written.
Output from the statics calculation will be in files of the form ‘example-nls.exo’.
Eigen results will be in the form ‘example-eig.exo’. The tangent solution normally
produces no output in the exodus format.

2These features are not yet fully implemented in release 1.1. Currently only one restart or solver
option is recognized for all solutions.
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Table 1: Salinas Solution Types
Solution Type Description Parameters
dump form matrices only
eigen real eigensolution nmodes, shift
eigenk real eigensolution of K nmodes

(seldom useful)
subdomain eigen subdomain eigenanalysis nmodes

(ONLY for debug)
ceigen unimplemented
statics static stress
NLstatics nonlinear statics max newton iterations,tolerance

num newton load steps, update tangent
checkout skip large matrix and solves
transient implicit transient analysis time step, nsteps, nskip, rho, flush
NLtransient implicit nonlinear transient time step, nsteps, nskip, rho, flush,

analysis max newton iterations,tolerance
transhock shock response spectra using time step, nsteps, nskip, flush

direct implicit transient srs damp
analysis

modalfrf frequency response nmodes, usemodalaccel, nrbms
using modal displacement
or modal acceleration

directfrf direct frequency response
modaltransient transient analysis nmodes,

using modal superposition time step, nsteps, nskip, flush
modalranvib random vibration eigen parameters

using modal superposition [noSVD]
modalshock shock response spectra using nmodes,

modal approximate implicit time step, nsteps, nskip, flush
transient analysis srs damp
(unimplemented)

tangent compute tangent matrices
(multicase only)

tsr preload thermal structural response file
(multicase only)

nox NOX nonlinear solver library NOX
(NLstatics and NLtransient problems only)
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Table 2: Multicase Parameters
These parameters may be specified as defaults above the case specifications, or they
may be specified for each subcase to which they apply.

Parameter Description Options
restart Restart options see section 2.2.1
solver selection of solver see section 2.2.2

Solution
restart=none
title=’example multicase’
case ’nls’

nlstatics
load=10

case ’tangent’
tangent

case ’eig’
eigen
restart=read

case ’trans’
transient

restart=auto
time_step 1e-8 1e-6
nsteps 100 4000
flush 50
rho=0.9
load=20

END

The case keyword must always be followed by a label. The label is used in
the output file name. The case keyword is also used to divide parameters of each
solution type.

The load keyword is used within a solution step to indicate which loads to
apply during a solution. In the example above, load ’10’ will be applied during the
nonlinear statics calculation. During a multicase solution the loads section (found
elsewhere in the file) will be ignored. See paragraph 2.11 for information on the
loads section or paragraph 2.12 for information on the load section of the input
file.
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2.1.2 Eigen

The eigen keyword is needed to obtain the eigenvalues and mode shapes of a system.
The parameters which can be specified for an eigensolution are shown in the table
below. By default, if nmodes is not specified, a value of 10 is used.

Parameter Argument Default
nmodes Integer 10

shift Real 0

The shift parameter indicates the shift desired in an eigenanalysis. The shift
value represents a shift in the eigenvalue space (i.e. ω2 space). The value to select is
problem dependent, and only relevant for singular systems (i.e. floating structures).
Please see the following discussion.

Eigenanalysis of singular systems
The eigenvalue problem is defined as,

(K − ω2M)φ = 0. (1)

Where K and M are the stiffness and mass matrices respectively, and ω and φ are
the eigen values and vectors to be determined. The problem may be solved using
a variety of methods - the Lanczos algorithm is used in Salinas. In this method, a
subspace is built by repeated solving equations of the form Ku = b. For floating
structures, or structures with mechanisms, K is singular and special approaches are
required to solve the system. The two approaches used in Salinas are described
below.

Deflation. If it is possible to identify the singularity in K, then the null vectors of
K are eigenvectors (with ω = 0), and the system can be solved by insuring that
no component of the null vectors ever occurs in b. This approach is equivalent
to computing the pseudo inverse of K.

The strength of deflation is that if the eigenvectors can be determined ex-
actly, the Lanczos algorithm is unaltered and the remaining vectors can be
determined somewhat optimally. The difficulty is ensuring that we have cor-
rectly determined the eigenvectors, especially when mechanisms or multipoint
constraints exist in the model. Determination of the eigenvectors is often a
tolerance based approach that has not been as robust as we would like.

Shifting. The second method involves solution of a modified (or shifted) eigenvalue
problem.

((K − σ)− µM) φ = 0. (2)
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This system has the properties that the eigenvectors, φ, are unchanged from
the original equation, and the eigenvalues, µ, are simply related to the original
values. Namely, µ = ω2 − σ.

The shifted problem benefits from the fact that K−σM can be made nonsin-
gular (except in very rare situations). This is done by choosing σ to be a large
negative value. Unfortunately, the Lanczos routine convergence is affected if
σ is chosen to be too far from zero3. A reasonable value is σ = −ω2

elas, where
ωelas is the expected first nonzero (or elastic) eigenvalue.

On serial platforms we support only the shifted method. Because of the higher
accuracy of direct solvers, a small negative shift is normally sufficient to solve the
problem. This shift (usually -1) is computed automatically. We do not recommend
that you override the defaults.

When using the FETI solver on parallel platforms both methods are available.
If deflation is used, user input (and careful evaluation) may be required to ensure
that all global rigid body modes have been properly identified. The relevant FETI
parameters are rbm and grbm tol as described in appendix D.

The shifted eigenvalue problem has proven to be more robust for many complex
problems. Set the grbm tol to a small value (e.g. 1e-20), and manually enter a
negative shift. The output should still be examined to insure that no global rigid
body modes are detected.

If the model is not floating and has no mechanisms, the system is not singular,
and no shift should be used (as it may slow convergence).

Example
A SOLUTION section for an eigenanalysis with a shift of −106 , will look

like the following, if 12 modes are needed. This shift would be appropriate for a
system where the first elastic mode is approximately 150Hz.

Solution
eigen
nmodes 12
shift -1.0e6

end

3If σ is too large a negative value, many solves will be required to determine the eigenvalues
(which consequently slows convergence). Another consequence is that often not all redundant, zero
eigenvalues may be found. They may be found by reducing the shift, tightening tolerances or by
restarting.
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2.1.3 Eigenk

The eigenk keyword is used to obtain the eigenvalues and eigenvectors of the
stiffness matrix of the model. This is equivalent to eigen if the mass matrix is
equal to the identity matrix. The same parameters apply.
IT IS CURRENTLY ONLY AVAILABLE ON SERIAL PLATFORMS.

2.1.4 Subdomain Eigen

The subdomain eigen keyword is used to obtain the eigenvalues and eigenvectors
of the mass and stiffness matrix of the model on a subdomain basis. This is useful
mainly for debugging distributed solutions. It is obviously decomposition dependent,
and has no physical meaning.

2.1.5 Ceigen

The Ceigen keyword is used to select complex eigen analysis. This computes the
solution to the quadratic eigenvalue problem,(

K + Dλ + Mλ2
)

u = 0 (3)

Currently this is not implemented. We expect it in release 1.2.

2.1.6 Statics

The statics keyword is required if a static solution is needed, i.e. the solution to
the system of equations [K]{u} = {f}. An example SOLUTION section is shown
below.

Solution
title ’Example of a statics solution’
statics

end

2.1.7 NLStatics

The NLstatics keyword is required if a nonlinear static solution is needed, i.e. the
solution to the system of equations [K]{u} = {f}, where K is now a function of u.
The following table gives the parameters needed for nonlinear static analysis.
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Parameter Argument Default
max newton iterations Integer 100

tolerance Real 1e-6
num newton load steps Integer 1

update tangent Integer 101

Four parameters control the conventional Newton method. Newton methods are
nonlinear solution algorithms employed to solve the residual force equations. The
residual vector, r, is the difference between the internal force vector, it p and the
external force vector, it f.

r = p− f = 0 (4)

The internal force vector is a function of the structural displacements. External
forces can also be a function of the structural displacements in the case of follower
loads such as surface pressure loads.

The tolerance provides control over the completion of the newton iteration.
Once the change in the L2 norm of displacement decreases below tolerance, the
loop completes successfully. If the iteration count exceeds max newton iterations,
the Newton loop is considered to have failed.

The num newton load steps keyword controls the number of load steps
used to incrementally step up to the final equilibrium position. Large loads may
cause the Newton algorithm to diverge. If this occurs, increase the number of load
steps applied. Displacements will be output after each load step which may be
animated similar to transient dynamics simulations.

The update tangent keyword controls how often the tangent stiffness matrix
is rebuilt during the Newton iterations. The default is set to update the tangent
stiffness matrix at the beginning of a load step only. Setting update tangent to
1 is equivalent to using a full-Newton algorithm where the tangent stiffness matrix
is rebuilt after each Newton iteration. For highly nonlinear (difficult) problems, this
option may be optimal, but for most problems the extra cost incurred in recom-
putation and refactoring of the tangent stiffness matrix should be amortized over
several solves. Note, for this option to improve Newtons method, the element types
in the model have to have the tangent stiffness method implemented.

An example SOLUTION section is shown below.

Solution
title ’Example of a nonlinear statics solution’
nlstatics
tolerance = 1e-6
max_newton_iterations = 100
num_newton_load_steps = 10 // split external load into 10 increments
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update_tangent = 1 // full-newton algorithm
end

2.1.8 Transient

The transient solution method is used to perform a direct implicit transient anal-
ysis. The following table gives the parameters needed for transient analysis.

Parameter Argument Default Purpose
time step Real 1 set the time step

nsteps Integer 100 set the number of steps
nskip Integer 1 set output frequency
flush Integer 50 control file buffering
rho Real none - see below select time integrator

The parameters time step, which defines the time integration step size, and nsteps,
which defines the total number of integration steps, are required. The parameter
nskip controls how many integration steps to take between outputting results and
is optional. (It defaults to 1, which is equivalent to outputting all time steps).

The parameter flush controls how often the Exodus output file buffers should
be flushed. Flushing the output insures that all the data that has written to the
file buffers is also written to the disk. This parameter also controls the frequency
of output of restart information if requested. Too frequent buffer flushes can affect
performance. However, in a transient run, data integrity on the disk can only be
assured if the buffers are flushed. A flush value of -1 will not flush the Exodus
output file buffer until the run completes. The default value is to flush the buffers
every 50 time steps.

We note that multiple time step values, along with the corresponding number
of steps, can be specified for transient analysis. This can be useful for separating
the simulation into a section of small time steps followed by a section of larger time
steps, or vice versa. The following provides an example of the use of multiple time
steps.

solution
time_step 1e-5 1e-3
nsteps 100 500
nskip 10 1

end

In this case, the user requested 100 time steps of ∆t = 1E − 5, followed by 500
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time steps of ∆t = 1E−3. There is no practical limit on the number of such regions
that may be specified.

Integrator selection
Two time integrator schemes are available for direct time integration. The

method and the parameters of the integrator are selected using the keyword rho.
If this keyword is not found, the time integrator defaults to a standard Newmark-
Beta integration scheme4. If the rho parameter is used, then the generalized alpha
method5 is used, and the value of the numerical damping is controlled by rho.

*** IMPORTANT ***
Because of limited accuracy in the solvers, the Newmark-Beta integrator is condition-
ally unstable. If no damping is provided, it occasionally diverges as time progresses.
This is described in a little more detail in the theory manual. Therefore it is strongly
recommended that either proportional damping or numerical damping be used in all
time integration.

The parameter rho defines the Numerical damping of the generalized alpha
method. Rho varies from 0 (maximal damping case) to 1 (minimal damping case).
If rho is not specified in the input file, the integrator defaults to the
Newmark beta method. Otherwise, the code uses the value of rho given by the
user to compute the parameters needed for the generalized alpha method. There-
fore, there is no value default for rho, as shown in the table above, since if it is not
specified the code uses the Newmark beta method instead. If rho is specified to
be greater than 1 or less than 0 an error message is printed. The three parameters
newmark beta, αf , and αm in the generalized alpha method are computed auto-
matically, given the value of rho, and thus these need not be specified by the user.
More detailed information on the implementation, and references can be found in
the description of the method in the Salinas program notes and theory manual.

In order to achieve second order accuracy and unconditional stability, we must
satisfy the following conditions.

αm < αf <=
1
2

γn =
1
2
− αm + αf

4The Newmark-Beta integration is described in detail in most finite element text such as Cook
or Hughes.

5Farhat, Crivelli, and Geradin, ’Implicit time integration of a class of constrained hybrid formu-
lations - Part I: Spectral stability theory’, CMAME, 125(1995), 71-107. Chung, J., Hulbert, G.M.,
’A Time Integration Algorithm for Structural Dynamics with Improved Numerical Dissipation: The
Generalized alpha method”, J. Applied Mech., Vol.60, pp. 371-375.
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βn ≥
1
4

+
1
2
(αf − αm)

(5)

The code automatically computes these parameters such that they meet these cri-
teria.

Unlike the proportional damping parameters, there is no direct relation between
rho and an equivalent modal damping term. Numerical damping strongly affects
only the highest frequency modes (which are non-physical anyway). We recommend
a value of rho=0.9 for most analyses.

2.1.9 NLTransient

The NLtransient solution method is used to perform a direct implicit nonlinear
transient analysis. The following table gives the parameters needed for nonlinear
transient analysis.

The nonlinear transient analysis is performed according to methods described
in Hughes. A projector, corrector step is used. Note that for a linear system the
NLtransient analysis will require two solves per time step.

Parameter Argument Default
time step Real -

nsteps Integer -
nskip Integer 1
flush Integer 50
rho Real Newmark beta

max newton iterations Integer 100
tolerance Real 1e-6

num newton load steps Integer 1
update tangent Integer 101

The time step control parameters, time step, nsteps, nskip and flush are
described in the transient section above, section 2.1.8. The parameter rho is
the same as described in the previous section. We note that, as in the case of
linear transient analysis, multiple time steps can be specified in nonlinear transient
analysis. The syntax for this is the same as described in the section on linear
transient analysis.

Four parameters control the conventional Newton method used to solve the resid-
ual force equations. The tolerance provides control over the completion of the
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newton iteration. Once the change in the L2 norm of acceleration decreases be-
low tolerance, the loop completes successfully. If the iteration count exceeds
max newton iterations, the Newton loop is considered to have failed.

The num newton load steps controls the number of load steps used to in-
crementally step up to the final equilibrium position. Large loads may cause the
Newton algorithm to diverge. For nonlinear statics, it is recommended to increase
the number of load steps. For nonlinear transient problems, if Newtons method
diverges, either the tangent stiffness matrix has to be updated more often (see up-
date tangent) or the time-step should be decreased. The default value is 1 for
both nonlinear statics and nonlinear transient solution methods.

The update tangent controls how often the dynamic tangent stiffness matrix
is rebuilt during the Newton iterations. The default is set to update the dynamic
tangent stiffness matrix at the beginning of a load step. Setting update tangent
to 1 is equivalent to using a full-Newton algorithm where the dynamic tangent stiff-
ness matrix is rebuilt after each Newton iteration. For highly nonlinear problems,
some control of this option is recommended. Note, for this option to improve New-
tons method, the element types in the model have to have the dynamic tangent
stiffness method implemented.

2.1.10 Transhock

The transhock solution method is used to perform a direct implicit transient
analysis followed by computation of the shock response spectra for the degrees of
freedom in a specified node set (all node sets are defined in the Exodus file). The
following table gives the parameters needed for transient shock analysis.

Parameter Argument
time step Real

nsteps Integer
nskip Integer

srs damp Real

The parameters time step, which defines the time integration step size, and nsteps,
which defines the total number of integration steps, are required. The parameter
nskip controls how many integration steps to take between outputting results and
is optional. (It defaults to 1, which is equivalent to outputting all time steps).

The parameters freq step, freq min, and freq max are used to define the
frequencies for computing the shock response spectra. They are identified in the
frequency section along with an application region (see section 2.8). The range of
the computed frequency spectra is controlled by freq min and freq max, while
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freq step controls the resolution. The accuracy of the computed spectra is not de-
pendent on the magnitude of freq step. This parameter only controls the quantity
of output.

The keyword srs damp is a damping constant used for the shock response
spectra calculation and is optional. It represents the damping for each single degree
of freedom oscillator in the shock spectra computation. Its default value is 0.03.

Note: Currently, the shock spectrum procedure will only compute acceleration
results. The options specified in the OUTPUT and ECHO blocks are used in the
transient portion of the analysis, but are ignored for the post-processing of the tran-
sient results into shock spectra. Thus, if displacement, velocity, and/or acceleration
is selected in the OUTPUT and/or ECHO sections for a shock spectra analysis, the
results echoed to the output listing or the Exodus output file will be time history
results as requested, but the only shock spectra results will be for acceleration re-
sponse for the nodes in the specified node set. Furthermore, the calculated shock
spectra will only be echoed to the output listing; they are not output to the Exodus
results file. The shock spectra output options will be revised and improved in future
releases.

2.1.11 Modalfrf

Option modalfrf is used to perform a modal superposition-based frequency re-
sponse analysis. In other words, the modalfrf provides an approximate solution to
the Fourier transform of the equations of motion, i.e.(

K + iωC − ω2M
)

u = f(ω)

where u is the Fourier transform of the displacement, u, and f is the Fourier trans-
form of the applied force.

Two options are available for the modalfrf solution: the modal displacement
method, and the modal acceleration method. In both cases the approximate solution
is found by linear modal superposition. Once the modes have been computed, there
is little cost in computation of the frequency response. The solution does suffer
from modal truncation of course, but in the case of the modal acceleration method
a static correction term partially accounts for the truncated high frequency terms.
Thus, in general that method is more accurate than the modal displacement method.
The most accurate, but also the most computationally expensive approach is the
directfrf method described in section 2.1.12.

For the modal displacement method, the relation used for modal frequency re-
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sponse is given below.

uk(ω) =
∑
j

φjkφjmfm(ω)
ω2

j − ω2 + 2iγjωjω

Here uk is the Fourier component of displacement at degree of freedom k, φjk is
the eigenvector of mode i at dof k, and ωj and γj represent the eigenfrequency and
associated fractional modal damping respectively.

For the modal acceleration method, the procedure for computing the modal
frequency response is more complicated. The response is split into the rigid body
contributions, and the flexible contributions. The number of global rigid body modes
must be specified in the input file. For details on the theory, we refer to the theory
manual.

The force function must be explicitly specified in the load section, and MUST
have a “function” definition. Note that the force input provides the real part of the
force at a given frequency, i.e. it is a function of frequency, not of time. At this
time, we do not provide a way to input the imaginary component of the force.

The following table gives the parameters needed for modalfrf section.

Parameter Argument
nmodes Integer

usemodalaccel -
nrbms Integer

The nmodes parameter controls the eigenanalysis (see section 2.1.2). The op-
tional keyword, usemodalaccel, is used to determine whether to use the modal
displacement or the modal acceleration method. If this keyword is specified, modal
acceleration is used, otherwise the modal displacement method is invoked. If use-
modalaccel is used, then the number of global rigid body modes must be specified
using nrbms.

The parameters freq step, freq min, and freq max are used to define the
frequencies for computing the shock response spectra. They are identified in the
frequency section along with an application region (see section 2.8). The range of
the computed frequency spectra is controlled by freq min and freq max, while
freq step controls the resolution. The accuracy of the computed spectra is not de-
pendent on the magnitude of freq step. This parameter only controls the quantity
of output.
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2.1.12 Directfrf

Option directfrf is used to perform a direct frequency response analysis. In other
words, we compute a solution to the Fourier transform of the equations of motion,
i.e. (

K + iωC − ω2M
)

u = f(ω)

where u is the Fourier transform of the displacement, u, and f is the Fourier trans-
form of the applied force. The method used is to compute the frequency dependent
matrix A(ω) = K + iωC − ω2M , and frequency component of the force at each fre-
quency point at the output. The matrix equation is then solved once per frequency
point. When a direct solver is used, this means that a complex factorization must be
performed once per output. This can be very time consuming, and the modalfrf
may be a better option for many situations (see section 2.1.11).

The force function must be explicitly specified in the load section, and MUST
have a “function” definition. Note that the force input provides the real part of the
force at a given frequency, i.e. it is a function of frequency, not of time. At this
time, we do not provide a way to input a complex force.

The parameters freq step, freq min, and freq max are used to define the
frequencies for computing the directfrf. They are identified in the frequency sec-
tion along with an application region (see section 2.8). The range of the computed
frequency response is controlled by freq min and freq max, while freq step
controls the resolution.

Note that, currently, directfrf is only a serial implementation. The parallel im-
plementation is scheduled for implementation in release 1.2.

2.1.13 Modaltransient

Option modaltransient is used to perform a modal superposition-based implicit
transient analysis. The following table gives the parameters needed for modal-
transient. Damping for the model is defined in section 2.22.

Parameter Argument default
time step Real none
nsteps Integer none
nskip Integer 1
load Integer sec 2.12

The parameters time step, which defines the time integration step size, and nsteps,
which defines the total number of integration steps, are required. The optional pa-
rameter nskip controls how many integration steps to take between outputting



2.1 SOLUTION 17

results. (It defaults to 1, which is equivalent to outputting all time steps). Time
dependent loadings are applied by referencing the appropriate load and function
sections (see 2.12 and 2.19).

Modal transient should normally be executed as a later step of a multicase
solution, where previous steps computed the eigenvalue response. However, for
compatibility with earlier formats, modaltransient can be called as a single step
solution (see section 2.1.2). In that case the following eigen value parameters are
also required. Note that in a single step solution (with no case structure), no load
keyword is required, but a loads section must exist in the file (see section 2.11).

Parameter Argument
nmodes Integer
shift Real

2.1.14 Modalshock

The modalshock solution method is used to perform a modal superposition-based
implicit transient analysis followed by computation of the shock response spectra
for the degrees of freedom in a specified node set. The following table gives the
parameters needed for modalshock.

Parameter Argument
nmodes Integer

time step Real
nsteps Integer
nskip Integer

srs damp Real

The nmodes parameter controls the modal solution described in section 2.1.2.
The time stepping parameters time step, nsteps and nskip are described in the
transient section (2.1.8).

The parameters freq step, freq min, and freq max are used to define the
frequencies for computing the shock response spectra. They are identified in the
frequency section along with an application region (see section 2.8). The range of
the computed frequency spectra is controlled by freq min and freq max, while
freq step controls the resolution. The accuracy of the computed spectra is not de-
pendent on the magnitude of freq step. This parameter only controls the quantity
of output.

The optional parameter srs damp is a damping constant used for the shock
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response spectra calculation. Its default value is 0.03. Damping for the model is
defined in section 2.22.

2.1.15 Modalranvib

Option modalranvib is used to perform a modal superposition-based random
vibration analysis in the frequency domain. The solution computes the root mean
square (RMS) outputs (including the von mises stress) for a given input random
force function. The resulting power spectral density functions may also be output
for locations specified in the “frequency” section. The forcing functions (one for
each input) must be explicitly specified in the load section, and MUST have a
“matrix-function” definition (see section 2.20).

The following table gives the solution parameters needed for modalranvib
analysis.

Parameter Argument
nmodes Integer
[noSVD] N/A
lfcutoff Real

keepmodes Integer

The nmodes parameter controls the eigenanalysis (see section 2.1.2). All keywords
associated with eigen analysis are appropriate and available. It is recommended that
the eigenanalysis be performed as the first step of a multicase solution.

The optional keyword noSVD determines the method used to compute the
RMS von Mises stress output. If noSVD is specified, then the simpler method
which does not use a singular value decomposition is used. However, this method
provides no information about the statistics of the stress. Only the RMS value is
reported.

The optional keyword lfcutoff provides a low frequency cutoff for random vi-
bration processing. Usually, rigid body modes are not included in this type of
calculation. The lfcutoff provides a frequency below which the modes are ignored.
The default for this value is 0.1 Hz. Thus, by default rigid body modes are not
included in random vibration analysis. A large negative value will include all the
modes.

The optional keyword keepmodes is a method of truncating modes. By default,
its value is nmodes. If a value is provided, the modes with the lowest modal
activity will be truncated until only keepmodes remain. Note that this is a much
different truncation procedure than simply truncating the higher frequency modes.
Modal truncation is important because all of the operations compute responses that
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require order N2 operations. Even if keepmodes is not entered, modes with modal
activity less than 1 millionth of the highest active mode will be truncated.

The parameters freq step, freq min, and freq max are used to define the
frequencies for computing the random vibration spectra. They are identified in the
frequency section along with an optional application region (see section 2.8). The
range of the computed frequency spectra is controlled by freq min and freq max,
while freq step controls the resolution. The accuracy of the computed spectra does
depend on the magnitude of freq step since it is used in the frequency domain
integration.

In random vibration, the frequency block serves two purposes. First, it is used
for the integration information for the entire model. Thus Γqq for the referenced
papers6 is integrated over frequency and used for all output. In addition, if an output
region is specified in the frequency block, output acceleration and displacement
power spectra may be computed for the given region at the required frequency
points. At this time, only “acceleration” and/or “displacement” may be specified
in the frequency block for random vibration analysis. This output is described in
more detail below.

Random vibration analysis is a little trickier than most input. A number of
blocks must be specified.

1. The solution block must have the required input for eigen analysis, and the
keyword modalrand.

2. The ranloads block contains a definition of the spectral loading input ma-
trix and the loadings. Note that the input, SFF is separated into frequency
and spatial components. The spatial component is specified here using load
keywords. See section 2.13. The spectral component is referred to here, but
details are provided in the matrix-function section.

3. The matrix-function section contains the spectral information on the load-
ing. It references functions for the details of the load. The real and imaginary
function identifiers for this input are specified here (2.20).

4. There must be a function definition for each referenced spectral function.
Functions of time or frequency are further described in section 2.19.

5. There must be a frequency block that is used for integration and optionally
also for output of displacement and acceleration output. See section 2.8.

6Reese, Field and Segalman, A Tutorial on Design Analysis Using von Mises Stress in Random
Vibration Environments Shock and Vibr. Digest, Vol. 32, No. 6, Nov 2000.
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6. As an undamped system is singular, some type of damping block information
needs to be provided. Modal damping terms are required. See section 2.22.

7. Boundary conditions are supplied in the usual way, but the standard LOADS
block is replaced by the input in the ranloads section. The loads block will be
quietly ignored in random vibration analysis.

8. The output and echo sections will require the keyword vrms for output of
RMS quantities.

All other input should remain unchanged.

Power Spectral Densities. One output from the random vibration analysis is
a power spectral density or PSD (for displacement or acceleration). The power
spectral density is a measure of the output content over a frequency band, and
usually measured in units of cm2/Hz or some similar unit. Acceleration PSDs are
often measured in units of g2/Hz.

Like the input cross spectral forces, the output quantities are hermitian, with
9 independent quantities at each frequency, at each output node for each type of
output. Details of how these quantities are transformed in alternate coordinate
systems are outlined in the theory manual. The matrix quantities are diagramed
below. Quantities are output in the order Axx, Ayy, Azz, Azx, Azy, Axy, Azxi, Azyi,
Axyi.  Axx Axy + iAxyi Axz + iAxzi

Axy − iAxyi Ayy Ayz + iAyzi

Axz − iAxzi Ayz − iAyzi Azz


Because the inputs are specified in terms of force cross-correlation functions, the

standard procedure for applying loads often involves application of a large concen-
trated mass at the input location. The force may then be applied to the mass and
the acceleration determined from a = f/m, where we assume that m is much larger
than the mass of the remainder of the structure. Some confusion can arise in the
scaling of the force.

The output PSD for acceleration is defined as follows.

Gij = H†
kiSklHlj (6)

< aiaj > = H†
ki < fkfl > Hlj (7)

where Hlj is the transfer function giving aj/fl.
Consider a single input, i.e. k = l, and with fk = mkak.
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Gij = H†
ki < mkakakmk > Hlj (8)

= (m2
k)Hki < akak > Hkj (9)

Thus, the acceleration PSD must be multiplied by the square of the mass to
get the force PSD. Note that Salinas uses the scale factor in the spatial force
distribution, so the scale factor in Salinas should be mk.

2.1.16 Checkout

The checkout solution method tests out various parts of the code without forming
the system matrices or solving the system of equations. This solution method may
be used to check input files for consistency and completeness on a serial platform
before allocating expensive resources for a full solution.

2.1.17 Dump

The keyword dump will cause Salinas to form matrices only and no solution will
be obtained.

2.1.18 Tangent

The tangent solution step is only relevant as part of a multicase solution (see
paragraph 2.1.1). It forces an update of the tangent stiffness matrix. It is typically
used following a nonlinear solution step to insure that the following step begins
using the tangent stiffness matrices computed from the previous result. However, it
may also be used following a linear solution step, in which case the stiffness matrix
is recomputed based on the current value of displacement.

The tangent stiffness matrix is assembled at the subdomain level from compu-
tations at the element level. It represents the partial derivative of the force with
respect to the displacement, i.e.

Ktangent =
∂f

∂u
(10)

In eigen analysis, the tangent stiffness matrix replaces the linear stiffness matrix
in the eigenvalue equation. This permits computation of modal response following
a preload. In nonlinear transient dynamics, the tangent stiffness matrix is used in
the Newton (or other) iteration scheme used to reduce force residuals.
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2.1.19 TSR Preload

The tsr preload solution method reads an exodus file with a previously computed
Thermal Structural Response (TSR) into Salinas for a subsequent statics or transient
dynamics analysis. This is not a fully coupled calculation. Rather, stress results are
read from the file, an equivalent internal force is computed, and that internal force
is combined with the applied force throughout the transient run. Tsr preload
may only be specified as part of a multicase solution, and it must be followed by a
transient dynamics solution (see paragraphs 2.1.1 and 2.1.8 respectively).

Note that since the stresses are actually converted into a force, and since there
is no immediate deformation in transient dynamics, the elastic stresses output by
Salinas will be very small initially, i.e. they will not contain a contribution from the
thermal stress. However, at large times, the deformation from the internal force will
result in an elastic stress opposite to that of the thermal stress. There is currently
no method of recovering the input thermal stress as an output quantity.

The tsr preload solution method is considered to be a temporary solution to
a more complicated problem. In the future, TSR analysis will involve coupling to
other mechanics codes.

The following table gives the solution optional parameter used in tsr preload
analysis.

Parameter Type Argument
file string exodus file name

The exodus file name is a string that points to the file containing the stress results
from the TSR calculation. If no file keyword is provided, the data is expected in
the input genesis file, i.e. the geometry file specified in the FILE section (see
paragraph 2.9). Currently, for parallel execution, the data must be specified in the
genesis file, as the file name is not properly parsed for spread files.

Data in the exodus file must strictly match these criteria. There must be only
one time step in the result. That time step must have a number of different element
fields defined. These correspond to the six stresses and up to 27 different integration
points of a hex20. Other solid elements are also supported. For those elements
only the number of integration points applicable to that element are used. Unused
integration values will be ignored. If in doubt, provide the extra integration data as
missing integration points do NOT provide an error - rather they set the value to
zero. Shell and beam type elements are not supported in tsr preload.

The labels for the stresses must be as shown in the table below. In each case,
replace %d with an integer representing the integration point value (0 to 26).
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Name Definition
SIGXX %d σxx, the xx component of stress
SIGYY %d σyy, the yy component of stress
SIGZZ %d σzz, the zz component of stress
SIGYZ %d σyz, the yz component of stress
SIGXZ %d σxz, the xz component of stress
SIGXY %d σxy, the xy component of stress

The following is an example solution section for a TSR preload followed by
transient dynamics.

SOLUTION
title ’Pure bending from initial stress’
case tsr

tsr_preload
load 1

case ’trn’
transient
time_step 1.e-6
nsteps 3
nskip 1

load 2
END

If executed on a file with geometry file=’example.exo’, this will produce two out-
put files, example-tsr.exo and example-trn.exo. The first of these has very little
useful information. The second will contain the displacements (or other variables)
from the transient analysis.

2.1.20 NOX

The nox solution option allows the nonlinear solution procedure for either NL-
statics or NLtransient problems to be driven by the NOX nonlinear solver library.
Currently, Salinas can be built to run with NOX on only selected development plat-
forms. These include serial execution on PC platforms running under Linux and
parallel execution on solaris machines. The builds are achieved using the makefiles
make.linux.nox and make.mpsolaris.7.nox, respectively. For such builds, the NOX
solver is not used by default but can be turned on by including the nox keyword
as follows.

An example SOLUTION section is shown below.
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Solution
title ’Example of a nonlinear statics solution’
nlstatics
tolerance = 1e-6
max_newton_iterations = 100
num_newton_load_steps = 10 // split external load into 10 increments
update_tangent = 1 // full-newton algorithm
nox // use NOX nonliner solver

end

This option has no effect other than to invoke additional parsing of the input
deck for problems other than NLstatics and NLtransient. Simply using NOX in
this way causes the default solution procedure to be used. This corresponds to
the Newton-based approach that is used in Salinas as described in sections 2.1.7
and 2.1.9). Other solution strategies provided by the NOX library are described in
section 2.23.

It should be noted that the NOX solver interface to Salinas is new and will likely
contain some bugs. If found, please e-mail a description of the bug to Russell Hooper
at rhoope@sandia.gov. At this time, there is a known bug with parallel execution
for problems involving element types of dimension two or three. This is currently
being addressed. In addition, support for other platforms is also anticipated to be
provided shortly.

2.2 Solution Options

The options described in Table 3 and in the following paragraphs are part of the
Solution section in the input file. None of the keywords are required. Note that
in multicase solutions most of these parameters may be applied separately within
the subcase (see section 2.1.1).

Table 3: Salinas Solution Options
Option Description Parameters
restart restart options none, read, write or auto
lumped Use lumped mass matrices none
solver Identify solver used “auto”
constraintmethod method of applying MPCs Lagrange

or Transform
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2.2.1 ReStart – option

Option restart controls restart file processing. Restart files permit the solution
to be saved for later use. Only a limited capability is provided, but it is intended
to meet most of the typical needs for structural dynamics. Note that the restart
files are independent of the exodus output, but the restart options may significantly
affect the exodus outputs. Application of restarts in specific sections is detailed in
the following paragraphs.

There are four values associated with this option.

none indicates that restart files will be ignored. They will be neither read, nor
written. Existing restart files will not be altered in any way. Restart=none is
the default selection if no restart options are entered in the solution block.

read indicates that existing restart files will be read, but no output restart files will
be written. If the restart files do not exist, a fatal error will result.

write indicates that existing restart files will be ignored, but restart files will be
written.

auto is a combination of read and write. However, unlike read, the existence of
previous restart files is optional, i.e. there will be no error message if there are
no existing restart files. Invalid restart files will produce a warning, but not a
fatal error.

Restarts are designed to insure accuracy of the solution. However, restarts in
Salinas are not transparent in the sense that there will be small differences in two
solutions to a problem when one solution involves a restart. Restarts may also have
an expense. For example, the FETI solver uses an acceleration technique where
the values of previous solutions are used as a starting place for new solves. The
information associated with previous solutions is not stored in the file.

For transient dynamics, the state of the machine at the most recent time step is
recorded. To avoid problems with corruption of a database, the three vectors (disp,
velocity, acceleration) are recorded at each time step, but on alternate locations in
the file. If previous exodus files exist, they will be appended. Data is written at the
same interval as the exodus output.

2.2.2 Solver

As Salinas evolves, various solvers are available for computation of the solution.
Each solver brings with it different capabilities and sometimes unwanted features.
Currently available solvers are listed in the following.
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AUTO Use the best known solver. Generally this is recommended. The matrix of
solvers versus solution types is messy, and generally the best solution will be
found by using this option. For example, there is no need to change the solver
as you move from serial to parallel solutions.

CLASP Under development by Clark Dohrman, this is a multigrid solver. It is not
currently considered a production solver.

FETI-DP This solver is the workhorse for parallel solutions. A full description
of the solver is beyond the scope of this users manual (references are on the
web). FETI-DP was developed by Charbel Farhat and Kendall Pierson. It is
very scalable, and robust. Multipoint constraints are handled using Lagrange
multipliers. The parallel solution process must be used with the solver, but
it can be reduced to a single subdomain. Care must be used to insure that
subdomains are mechanism free.

FETI-DPC An evolution of FETI-DP, this solver adds the capability to compute
constraints within the solver. NOT CURRENTLY AVAILABLE.

FETI-H This is another variant of FETI, designed specifically for complex so-
lutions. It is used only in the solution of direct frequency response func-
tions.NOT CURRENTLY AVAILABLE.

Genfac This is the only solver currently available in serial solutions. It is a direct
solver, and is part of sparspak developed by Esmond Ng. The solver is fairly
robust, but may fail for singular systems. It occasionally has problems for very
small systems. Originally written as a Cholesky decomposition, it has been ex-
tended to compute LDLT . Constraints are eliminated using a transformation
matrix method.

Prometheus Developed by Mark Adams, this is another multigrid solver. It has
some very nice features such as augmented Lagrange constraint handling.
NOT CURRENTLY AVAILABLE.

SuperLU This package, available from NERSC, provides both serial real and com-
plex solutions. In salinas, the complex version is used for solution of direct
FRFs.

NOX This package, curently being developed at Sandia and available at http://software.sandia.gov,
can be used in conjunction with any of the available linear solvers to drive the
nonlinear solution procedure for NLstatics and NLtransient problems. It is
currently available on only a small subset of platforms.
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Generally no user input is required for specification of a solver. Indeed, up to
version 1.0.5 of Salinas, only one solver was ever available at any time (i.e. we built
separate executables if another solver was desired). Usually the specification can be
left off, or specified as “auto”. If a solver is requested and unavailable, a warning
will be issued, and “auto” will be selected.

The solver may be specified as a default (above the case keywords as detailed
in section 2.1.1), or it may be individually specified within the case framework. The
default value is “auto”. In the example shown below FETI-DP will be used for the
eigen analysis, FETI-DPC for transient dynamics, and the “auto” selection for the
direct frequency response. If “input” is specified in the “echo” section (see section
2.5) then the solver information will be echoed to the results file.

SOLUTION
solver=auto
case eig

eigen nmodes=50
solver=feti-dp

case nlt
nltransient
solver=feti-dpc
(other parameters)

case frf
directfrf

END

2.2.3 Lumped – option

Option lumped in the SOLUTION section causes Salinas to use a lumped mass
matrix, and not consistent mass matrix, in the analysis.

2.2.4 Constraintmethod – option

The constraintmethod option is defined in the SOLUTION section to indicate
how multipoint constraints (MPC) will be applied. The selections for applying
MPCs are are Lagrange and Transform. These methods are explained in detail
on pp. 272-278 in Ref. 2.

The constraintmethod is currently superfluous. When using the FETI solver,
a Lagrange multiplier method is the only method available. When using the serial
solvers, the only available method is Transform.
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2.3 PARAMETERS

This optional section provides a way to input parameters that are independent of
the solution method or solver. Only one parameter section is recognized in each
file. The parameters and their meanings are listed below.

WtMass This variable multiplies all mass and density on the input, and divides
out the results on the output. It is provided primarily for the english system
of units where the natural units of mass are actually units of force. For ex-
ample, the density of steel is 0.283lbs/in2, but “lbs” includes the units of g,
386.4 in/s2. Using a value of wtmass of 0.00259 (1/386.4), density can be
entered as 0.283, the outputs will be in pounds, but the calculations will be
performed using the correct mass units.

Salinas, like most finite element codes, does not manage the units of the anal-
ysis. The selection of a consistent set of units is left to the analyst. For
example, if the analyst uses the SI system (Kg,m,s) the units of pressure must
be Pascals. Frequencies are reported in Hz. For micromachines these units
are quite awkward. It may be better to use units of grams, millimeters and
microseconds. The analyst must insure that all material properties and loads
are converted to these units.

Some examples of useful units are shown in Table 4.

Table 4: Some useful combinations of units.
length mass time wtmass density force modulus

m Kg sec 1 Kg/m3 N N/m2 or Pa
ft slug sec 1 slug/ft3 lbf lb/ft2

ft lbm sec 1/32.2 lbm/ft3 lbf lb/ft2

in lbm sec 1/386.4 lbm/in3 lbf psi
mm µg µs 1 Kg/m3 N MN/m2 or MPa
mm g sec 1/1000 g/cm3 µN N/m2 or Pa

NegEigen Unconstrained structures have zero energy modes which may evaluate
to small negative numbers due to machine round off. The eigenvalues and
associated eigenfrequencies are reported as negative numbers in the results
files. However, many post processing tools (such as ensight) require non-
negative frequencies. By default, Salinas converts all negative eigenvalues to
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near zero values in the output exodus files7. To retain the negative eigenvalues
in the output file, select parameter NegEigen.

OldBeam This option is provided for backwards compatibility with older beam
models. Early Patran models using the exodus preference numbered the at-
tributes incorrectly. The first versions of Salinas used that numbering. With
the new numbering the code had to change. Providing “oldbeam” in the pa-
rameters section selects the old numbering. The new numbering will be used
by default. At some point in the future, we plan to eliminate this option.

Table 5: Beam Attribute Ordering

Atttribute 1 2 3 4 5 6 7
old numbering area orientation I1 I2 J
new numbering area I1 I2 J orientation

eig tol This is the tolerance used by ARPACK for eigensolution. If not provided,
an automatic value is used.

MaxResidual This is a tolerance used to check the rigid body mode vectors
calculated by FETI. If this residual on the rigid body mode vector is larger
than this tolerance, Salinas will abort. The default value is 1.0.

LinkStiffness This option makes it easier for some solvers to properly compute
the response when there are many rigid links. At present, only RBARS and
RRODS (see sections 3.27 and 3.26) are affected. The option causes Salinas
to compute additional stiffness terms that would be associated with a beam (or
truss) in place of the rigid element. Since the constraint limits the deformation
to zero, there is no affect on the final solution, but the solution process can be
significantly simplified since singularities are removed from the stiffness matrix.
Specify LinkStiffness=yes or LinkStiffness=no. The default value is yes,
which means the additional stiffness terms are used.

SaveElemMatrices In nonlinear transient dynamics, the element forces are re-
computed at each iteration. For nonlinear elements, this is appropriate. How-
ever, for linear elements the calculation involves recomputation of the same

7Because many postprocessing tools are written for transient dynamics, they expect monotoni-
cally increasing, positive values for the time. Since eigenvalues are written in the time columns of
the output file, they are converted to be monotonically increasing, positive values. Note that the
numerically computed eigen frequencies are also stored as global variables in the file
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linear element matrices. The keyword SaveElemMatrices signals the ap-
plication to save the element stiffness, mass and damping matrices so these
force calculations can be streamlined. The speedup can be substantial, but
some additional memory is required. Elements that use viscoelastic materials
always save element matrices.

TangentMethod The tangent stiffness matrix may be used in a full Newton
update in nonlinear statics or transient dynamics (see sections 2.1.7 and 2.1.9).
By default, each of the elements can compute it’s own tangent stiffness matrix.
There are cases (particularly when elements are under development) when it
is better to use a tangent matrix computed from finite difference methods.
There are three possible values for this keyword.

TangentMethod=element The standard element method.

TangentMethod=difference Use finite difference.

TangentMethod=compare Use the standard method, but also compute
the matrix by the difference method. Unless “none” is specified in the
ECHO section (2.5), output of the difference of every element matrix in
the model will be sent to the results file.8

Example,

Parameters
saveelemmatrices
WtMass=0.001

End

2.4 FETI

This optional section provides a way to input parameters specific to the Finite
Element Tearing and Interconnecting3 (FETI) solver, if used. If the FETI solver
is not used, this section is ignored. It includes the following parameters, shown in
Table 6, and options. For those options which are strings, only enough of the string
to identify the value is required. The defaults are shown in the following example.

FETI
rbm geometric
scaling no

8In parallel solutions the results file is written only for the first processor unless the “subdomains”
option is specified in the echo section (2.5).
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Table 6: FETI Section Options

Variable Values Description
rbm Algebraic/Geometric rigid body mode method
scaling Yes/No scaling method
preconditioner LUMped/DIRichlet (both may be used)
max iter Integer maximum number iterations
solver tol Real
stag tol Real Used to detect stagnation
orthog Integer max number of orthog. vectors
rbm tol svd Real SVD tolerance in rigid body modes
rbm tol mech Real mechanical tolerance in rbm
projector Standard/Q projector
level 1 feti1 (feti2 not implemented)
corner dimensionality Integer 3 or 6 dofs/corner
corner algorithm Integer 1, 3, 5-8
corner augmentation String “none”, “subdomain”, “edge”
local solver AUto, SKyline, SParse, solver for local LU decomp

serial sparse
precondition solver Same as local solver solver for preconditioner

Only used if using dirichlet preconditioner
coarse solver AUto, SKyline, SParse solver for coarse GT G problem

PSparse, serial skyline, (psparse is parallel sparse)
serial sparse

grbm tol Real tolerance for rigid body
detection in GT G

prt summary Yes/No print summary timer information
prt rbm Yes/No print # rbm in each subdomain
prt debug integer debug output. values 0=none, 1-3
bailout if set, the solver will continue even if the

solution is not converged at each intermediate solve
mpc method Integer 0=Lagrange multipliers everywhere

1=Local elimination where possible
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preconditioner dirichlet
max_iter 400
solver_tol 1.0e-5
orthog 1000
rbm_tol_svd 1.0e-10
rbm_tol_mech 1.0e-8
projector standard // ignored in dp
level 1 // ignored in dp
local_solver sparse
coarse_solver sparse
grbm_tol 1e-6
prt_summary yes
prt_rbm yes
prt_debug 3
corner_dimensionality 6 // for dp only
corner_algorithm 3 // for dp only
corner_augmentation none // for dp only

END

2.4.1 Corner Algorithms

Corner selection is an important issue (and an ongoing research area) for FETI-
DP. Several algorithms are available. They all vary by the total number of corners
picked in the model for the coarse problem. The various algorithms are intended to
give a little more power to the advanced user. The more corners that are picked, the
quicker the solution will converge. The disadvantage being that there might not be
enough memory available for these corners, hence, Salinas might abort because of
this memory depletion. Memory statistics can be observed and with experience, the
advanced user can pick the optimal corner algorithm. The possible choices for the
various parameters are given in Table 7. All the options for each corner parameter
are listed such that the first option for each parameter picks the least amount of
corners.

Typically, corner algorithm 15 selects the minimal number of corner points. This
is a useful option to try if memory becomes an issue when running on large numbers
of processors. As noted above, smaller coarse grids increase the number of iterations
to convergence.

Corner algorithm 14 selects three corners between along the interface between
two neighoring subdomains (Γij designates the interface between subdomain i and
subdomain j). The first node is selected as the node along Γij that touches the most
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subdomains. The second node is the node that maximizes the distance between any
two nodes along Γij . The third node is selected to maximize the triangular area
created by three non-colinear nodes along Γij . Corner algorithm 14 will typically
select less corner nodes than Corner algorithm 3.

Note that additional corner nodes can be placed in a special file, extra nodes.dat.
Nodes in this file will be added to the current corner selection algorithm. While this
method is seldom useful, it can help in cases where an isolated element is causing
catastrophic problems. The format of extra nodes.dat is not reported here. It is
identical to extra node.dat which is written by feti. The usual approach is to edit
this file to keep only the nodes of interest.

Table 7: Corner Options
Corner Parameter Corner Option Description
Corner Algorithm 0 Picks 1 corner per interface
Corner Algorithm 1 Most robust algorithm
Corner Algorithm 2 Picks 2 corners per interface
Corner Algorithm 3 Picks 3 corners per interface
Corner Algorithm 9 Picks all interface nodes debug only
Corner Algorithm 14 Improved version of Corner Algorithm 3
Corner Algorithm 15 Improved version of Corner Algorithm 0
Corner Algorithm 16 No automatic corners.

(uses extra nodes.dat).
Corner Algorithm 17 like 3, but add corners for conms

Corner Dimensionality 3 Fixes 3 translational d.o.f. per corner
Corner Dimensionality 6 Fixes all d.o.f. per corner
Corner Augmentation none no additional corners are selected
Corner Augmentation edge Additional corners on interface edges

are selected. (Stiffness weighted).
Corner Augmentation subdomain Additional corners per subdomain

are selected.

2.4.2 Levels of Diagnostic Output

This section is under construction.

The prt debug flag takes various values from 0-4. Table 8 shows the various
values and their result. Note, for prt debug value of 3, a file named corner.data
is written. The format is as follows:

Ncorners
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GlobalId LocalId SubdomainId Xpos Ypos Zpos
.
.
.
GlobalId LocalId SubdomainId Xpos Ypos Zpos

Ncorners is the total number of corners, GlobalId is the global id of the corner,
followed by the local id (LocalId), the subdomain on which the corner exists (Sub-
domainId), and the coordinates of the corner (Xpos Ypos Zpos).

Table 8: Prt Debug Options
prt debug value Result

0 No Output
1 Some Output
2 Lot of Output
3 Output + Corner.data file
4 Output + Corner.data file + matlab files

2.5 ECHO

Results, in ASCII format, from the various intermediate calculations may be out-
put to a results file, e.g. example.rslt, where the filename is generated by taking
the basename of the text input file (without the extension) and adding .rslt as an
extension. Output to the results file is selected in the Salinas input file using
the ECHO section. An example is given below, and the interpretation of these
keywords is shown in Table 9.

echo
materials
elements
jacobian
all_jacobians
timing
mesh
echo
input
nodes

end
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Table 9: ECHO Section Options
Option Description
materials material property info, e.g. E, G
elements element block info, i.e. what material,

element type, etc
jacobian block summary of jacobians
all jacobians jacobians for every element
mesh summary of data from the input Exodus file
echo dumb echo of input (for parse errors)
input summaries of many sections
nodes nodal summary
timing timing information
subdomains “0:3:6,10” Controls which processor will output results file
mass mass properties in the basic coordinate system
feti input
displacement nodal displacements (better in output section)
velocity nodal velocities (better in output section)
acceleration nodal accelerations (better in output section)
force applied forces (better in output section)
eforce element force for beams
pressure applied pressures (better in output section)
strain element strains at centroids
stress element stresses at centroids
vonmises von mises stress only
vmrs RMS quantities (random vibration only)
energy element strain energy and strain energy density
genergies global kinetic and strain energy sums
eorient element orientation
ElemEigChecks element eigenvalue ratios
all everything
none nothing
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Note that if none is used, the order of selection is important. Thus, if you add none
at the end of the list, no output will be provided in the echo file. However, if you
put none nodes then only nodal summary information will be included. Entering
nodes none mesh only outputs the mesh information (nodes information is
cancelled by the none).

The mass properties may only be reported in this section (i.e. at this time there
is no mass property report in the outputs section). The mass properties reports the
total mass, the center of gravity and the moments of inertia of the system. All are
reported in the basic coordinate system. Note that moments are about the origins,
not about the center of gravity. Masses are reported in a unit system consistent
with the input, whether or not the WtMass parameter has been used (see section
2.3).

In parallel calculations, one results file is written per subdomain. Only data
associated with that subdomain are written to the file. Use the “subdomains” option
to specify which subdomains for which data will be written. See the comments in
the paragraphs below.

2.6 OUTPUTS

The outputs section determines which data will be written to selected output files.
All geometry based finite element results are written to an output exodus file. The
name of this file is generated by taking the base name of the input exodus geometry
file, and inserting -out before the file extension. For example, if the input exodus file
specification is example.exo, output will be written to example-out.exo. When using
a multicase solution (section 2.1.1), the case identifier is used in place of “out”.
More details are available in the FILE section (2.9).

Various non-geometry based finite element data, such as system matrices and
tables may be available in Matlab compatible format, or in Harwell-Boeing format.
These ASCII files have the .m or .hb file extensions respectively. The base file names
are derived from the type of data being output. These files are generated in the
current working directory.

In the following example, the mass and stiffness matrices will be output in Matlab
format, but the displacement variables, stresses and strains will not be output. All
the various options of the OUTPUT section are shown in Table 12. The next
sections describe each of the options and their results assuming an input file named
example.inp and a geometry file named exampleg.exo.

OUTPUTS
maa
kaa
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faa
// displacement
// stress
// strain
// energy
END

2.6.1 Maa

Option maa in the OUTPUTS section will output the analysis-set mass matrix
to a file named example Maa.m. If the harwellboeing option is selected, output will
also go a file named example Maa.hb.

2.6.2 Kaa

Option kaa in the OUTPUTS section will output the analysis-set stiffness matrix
to a file named example Kaa.m. If the harwellboeing option is selected, output will
also go a file named example Kaa.hb.

2.6.3 Faa

Option faa in the OUTPUTS section will output the analysis-set force vector to
a file named example Faa.m. If the harwellboeing option is selected, output will
also go a file named example Faa.hb.

2.6.4 ElemEigChecks

Option ElemEigChecks will turn on the element output of the first flexible eigen-
value, the largest eigenvalue, and the ratio of the two. The output will be stored in
the Exodus output file. The element variable names for the smallest flexible eigen-
value, largest eigenvalue, and ratio of the two are elam min, elam max, and elam rat,
respectively. Note: All 3-d and 2-d elements have this capability. The Beam2,
OBeam, Spring, Truss, Spring3, and RSpring elements are also supported.
All remaining elements will output values of zero. Finally, if elam max/elam min is
greater than 1020, then the value of elam rat will be set to 1e20.

2.6.5 Elemqualchecks

Option Elemqualchecks takes either one of two choices, on or off. The default
is on. If this option is on, then all of the elements in the input file are checked
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for quality using methods developed by Knupp (Ref. 4). Knupp uses a condition
number to evaluate the health of an element. The following table shows the elements
currently checked and their acceptable ranges.

Element Type Full Range Acceptable Range
Hex8 1−∞ 1− 8
Tet4 1−∞ 1− 3
Tria3 1−∞ 1− 1.3

TriaShell 1−∞ 1− 1.3
Quad4 1−∞ 1− 4
Wedge6 1−∞ 1− 5

If the element’s condition numbers falls outside the acceptable range a warning mes-
sage is printed. The value output with the warning is normalized by the maximum
number of the acceptable range for that element.

In addition to these checks, solid elements are checked for negative volumes. This
can occur if the node ordering for the element establishes a “height” vector using
the right hand rule that is in the opposite direction of the actual element height. In
other words, the nodes should normally be ordered in a counter clockwise direction
on the bottom surface of the element. Some codes such as Nastran, are insensitive
to this ordering. If element checks are run, then Salinas will correct (and report)
any solid elements found to have negative volumes. Without these corrections, the
code will continue, but results that depend on these elements are suspect.

It is strongly recommended that any exodus file with negative volumes be cor-
rected.

2.6.6 Displacement

Option disp in the OUTPUTS section will output the displacements calculated
at the nodes to the output exodus file.

2.6.7 Velocity

Option velocity in the OUTPUTS section will output the velocities at the nodes
to the output exodus file.

2.6.8 Acceleration

Option acceleration in the OUTPUTS section will output the accelerations at
the nodes to the output exodus file.
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2.6.9 Strain

Option strain in the OUTPUTS section will output the strains for all the ele-
ments to the output exodus file. For more information on stress/strain recovery, see
section 4.

2.6.10 Stress

Option stress in the OUTPUTS section will output the stresses for all the ele-
ments to the output exodus file. For more information on stress/strain recovery, see
section 4.

2.6.11 VonMises

Option VonMises in the OUTPUTS section will output the von Mises stress
for all the elements to the output exodus file. For volume elements, the output will
be the von Mises stress of the element. Surface elements define stresses on the top,
center and bottom layers. The output will be the maximum of these 3 values.

Note that the von Mises stress is computed and output as a portion of the output
if full stress recovery is requested. This option provides a mechanism for reducing
output. Thus, if full stress output is requested, then the VonMises will provide
no additional output. In other words, specifying both VonMises and stress in
the outputs section is redundant, but does not result in an error.

2.6.12 VRMS

Option vrms will output computed root mean squared (RMS) quantities from a
random vibration analysis. These quantities are written to a separate output file.
Quantities output include the RMS displacement, acceleration and von Mises stress.
In addition, the D matrix terms which contribute to the von Mises stress are output9.

2.6.13 Energy

Option energy in the OUTPUTS section will place strain energies and strain
energy density in the output exodus file. Note that the current implementation of
strain energies requires recomputation of the element stiffness matrix, which can be
expensive.

9For a definition of D, see Reese, Field and Segalman, A Tutorial on Design Analysis Using
von Mises Stress in Random Vibration Environments Shock and Vibr. Digest, Vol. 32, No. 6, Nov
2000.
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2.6.14 GEnergies

Option GEnergies in the ECHO or OUTPUTS section will trigger computa-
tion of global energy sums for the results and output exodus file, respectively. For
the ECHO case, the computation includes the following.

strain energy The strain energy is computed from uT Ku/2 where u is the dis-
placement and K is the current estimate of the tangent stiffness matrix. Note
that this may not be complete for nonlinear solutions. Linear viscoelastic
materials have contributions that will not be included in this sum.

kinetic energy Computed as vT Mv/2. Here v is the velocity and M is the mass
matrix.

work The work is defined as,

W (t) =
∫ x(t)

x(0)
F (x)dx

where F is the force and dx is the distance traveled. This can be restated as
an integral over time.

W (t) =
∫ t

0
F (τ)v(τ)dτ

where v = dx/dt is the velocity. We approximate this at discretized time tn
as,

Wn ≈
n∑
i

Fivi∆t

Note that this is a sum over time using the simplest method possible. Because
of integration error, it may not be completely consistent with the other energies
above. For the OUTPUTS case, the total energy is written out at each time
step.

2.6.15 Nodalstrain

Currently, nodalstrain option is not implemented.

2.6.16 Nodalstress

Currently, nodalstress option is not implemented.
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2.6.17 Harwellboeing

Option harwellboeing in the OUTPUTS section will output the mass and
stiffness matrices in Harwell-Boeing format to files with .hb extension.

2.6.18 Mfile

Option mfile will cause Salinas to output various Mfiles like Ksrr.m, Mssr.m,
etc. These files are mainly used by the Salinas developers for code maintenance
and verification. Since many of these files can be quite large, caution should be
exercised when using this option on large models.

2.6.19 Force

Option force in the OUTPUTS section will output the applied force vector to
the output exodus file.

2.6.20 EForce

Option eforce in the OUTPUTS section will output the element forces for beams
and springs to the output exodus file. Each two dimensional element will have 3
force entries for each node, for a total of 6 element forces per element.

2.6.21 EOrient

Option eorient in the OUTPUTS section will output the element orientation
vectors for all elements. The element orientation is a design quantity that normally
does not change significantly through the course of an analysis. This output is
provided to help in model construction and debugging.

The orientation vectors are output as nine variables that collectively make up
the three vectors required for element orientation. The output variables and the
associated meanings for various elements are shown in tables 10 and 11 respectively.

2.6.22 Pressure

Option pressure in the OUTPUTS section will output the applied pressure to
the output exodus file as an element variable. Note that there is no output for
different sides of an element. Thus, if there is pressure applied to more than one
face of an element, the output will represent only one of these pressures. Also note
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Table 10: Element Orientation Outputs
Name Description
EOrient1-X
EOrient1-Y first orientation vector
EOrient1-Z
EOrient2-X
EOrient2-Y second orientation vector
EOrient2-Z
EOrient3-X
EOrient3-Y third orientation vector
EOrient3-Z

Table 11: Element Orientation Interpretation
Element EOrient1 EOrient2 EOrient3
Beam2 axial first bending (I1) 2nd bending (I2)
Shells Element X Element Y Normal
Solids Element X Element Y Element Z
HexShell Element X Element Y thickness
ConM NULL NULL NULL
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that the output provides a single pressure variable per element, and is not directly
related to a particular element face. For most applications this provides a useful
tool for checking input loads.

Table 12: OUTPUT Section Options
Option Description
maa mass matrix in the a-set
kaa stiffness matrix in the a-set
faa force vector in the a-set
elemqualchecks on ‖ off default is on
ElemEigChecks outputs first flexible eigenvalue,

largest eigenvalue, and the ratio
of the two for each element

disp displacements at nodes
velocity velocity at nodes
acceleration acceleration at nodes
strain strain of element
stress stress of element
vonmises vonmises stress on element
vrms RMS quantities (random vibration only)
energy element strain energy and strain energy density
genergies global sum of energies
∗nodalstrain strains at the nodes of the f.e.m.
∗nodalstress stresses at the nodes of the f.e.m.
harwellboeing mass and stiffness matrices in Harwell-Boeing format
mfile Outputs various Mfiles ( mainly for developers )
locations Outputs nodal coordinates and DOF to node map
force Outputs RHS of system of equations to be solved
pressure Outputs pressure load vector
eforce Outputs element forces for beams
eorient Outputs element orientation vectors

∗Currently, nodalstrain and nodalstress are not implemented.

2.7 HISTORY

All the results from the “OUTPUT” section can be output to a limited portion
of the model using a history file. Only those outputs described in Table 12 are
supported. Note that if the output is also specified in the OUTPUT section, there



44 2 THE SALINAS INPUT FILE

is little need to write the data in the history file. The following output section
options are ignored in the history section because all history file output will be in
the exodus format.

• mfile

• harwellboeing

• kaa, maa, faa

• vrms

In addition to the output selection options, the history file section contains infor-
mation about the regions of output. The default is NO output selection. Selection
may be for node sets or element blocks. Side sets may also be selected, but the
side set selection is for the nodes associated with that side set, not for the elements
themselves. All nodal variables selected in the history file will be output for all se-
lected nodes. Selecting an element block automatically selects the associated nodes
in that block. The format for the selection is the same as that of the subdomains
selection in the ECHO section (2.5). For example,

HISTORY
nodeset ’1:10,17’
sideset ’3:88’
nodeset ’8,15’ coordinate 4
block 5,6,3
stress
disp

END

Any number of nodeset selections can be specified in the history section. Nodeset
specifications may be followed by an optional coordinate entry. If a coordinate
is specified, all nodal results for the nodes in the nodeset are transformed to the
specified coordinate system before output to the file. If a particular node is identified
in more than one specification, the last specification is used for the output. The
coordinate ID of nodes in the history file may be printed out in the echo file by
specifying nodes in the echo section of the input. The coordinate ID will also be
written to the history file (as a nodal variable CID) provided any nonzero coordinate
frames have been specified.

Only one block and one sideset specification is permitted in the history sec-
tion. Output coordinate frames may only be specified on nodesets.
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Unlike subdomains, node set and side set IDs need not be contiguous in the
exodus file. The selection criteria may identify nonexistent sets. These will be
silently ignored. In the above example, if the input exodus file contains no node set
with ID=10, it will not be treated as an error. Node set and side set IDs in the
history file will be consistent with the corresponding exodus input file.

Only one history file will be written per analysis. The name of the history file is
derived from the name of the exodus output file, except that the extension is “.h”.

Currently, history files in parallel can be a little confusing. In a parallel anal-
ysis, a single node may be replicated on one or more subdomains. Results from
all subdomains are concatenated without sorting. As a result, a single node may
be reported more than once, and the sort order of nodal results is decomposition
dependent. Starting with release 1.1 element variables are sorted.

While the history file provides a convenient means for transforming coordinates,
its applicability may be somewhat limited when output in many coordinate frames is
desired. In particular, only a single history file is written in each analysis, and only
one coordinate frame may be output per node. See the coordinate section (2.18)
for information on obtaining the transformation matrices from each coordinate frame
directly.

2.8 FREQUENCY

The frequency section provides information for data output from the modalFRF,
directFRF, shock, modalshock, and random vibrations solution methods. One fre-
quency file is written per analysis. The name of the frequency file is derived from
the name of the exodus output file, except that the extension is “.frq”. The section
format follows that of the history section, except that currently the only outputs are
nodal variables. Elements will be collected and placed in the geometry definition
of the file, but only nodal variables are output at each frequency value. Solution
methods that do not write frequency domain output silently ignore the Frequency
section.

The frequency section also includes the definitions of the frequency range and
step. (In the beta release notes, these were included in the solution section).

A frequency section (with some output selection region) must be selected for any
solution method requiring frequency output. To fail to do so is an error, since the
solution would be computed and no output provided.

FREQUENCY
nodeset ’1:10,17’
sideset ’3:88’



46 2 THE SALINAS INPUT FILE

block 5,6,3
disp
acceleration
freq_min=10 // starting frequency in HZ
freq_step=10 // frequency increment
freq_max=2000 // stop freq. This example has 201 frequency points.

END

The controls in the frequency section also affect data written to the results
(or echo) file. In particular, the echo file contains data only for those nodes in
the selection region of the frequency section. Selection of a specific output (such
as displacement or acceleration) is independent. For example, you may echo only
displacements, but write displacements and accelerations to the exodus frequency
output file.

The seacas translator exo2mat may be used to translate the output into matlab
format for further manipulation and plotting.

2.9 FILE

Disk files names are specified in the FILE section. The two possible parameters for
the FILE section are,

Option Description
geometry file Indicates which Exodus file to use

numraid Indicates how many raids are
available (for parallel execution)

In an MP environment, the file name is determined by the number of raid controllers
and the processor number. The actual file name is computed by this command:

sprintf(filename,fmt, (my proc id%numraid)+1, my proc id );

where fmt is the string specified for the geometry file. The number of raid devices is
defined using the keyword numraid. For example, on a single processor, a FILE
section may look like this.

FILE
geometry_file ’exampleg.exo’

END

On multiple processors this might look like:
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FILE
geometry_file ’/pfs_grande/tmp_%.1d/junkg/datafile.par.16.%.2d’
numraid 2

END

This will result in opening these files:

/pfs_grande/tmp_1/junkg/datafile.par.16.00
/pfs_grande/tmp_2/junkg/datafile.par.16.01
/pfs_grande/tmp_1/junkg/datafile.par.16.02
/pfs_grande/tmp_2/junkg/datafile.par.16.03
/pfs_grande/tmp_1/junkg/datafile.par.16.04
...
/pfs_grande/tmp_2/junkg/datafile.par.16.15

Note that if the file name is not included in quotes, it will be converted to lower
case. Appendix C shows the steps involved in the parallel execution of Salinas.

2.9.1 Additional Comments About Output

A text log or results file can be written for the run. Details of the contents of the
results file are controlled in the ECHO section (see section 2.5). The results file
name is determined by the name of the input file, and will be in the same directory
as the input text file, regardless of whether Salinas is being executed in serial
or parallel. However, if executing in parallel, using the “subdomains” option in the
ECHO section allows control of the number of results files. For example, if running
on 100 processors, up to 100 result files may be output. Using subdomains “0:2”
will only output three files, from subdomains 0, 1, and 2. The default is to output a
results file only for processor zero. The results file name uses the base name of the
input, with an extension of “.rslt”. In a parallel computation, the results file names
use the base name of the input file, followed by an underscore and the processor
number, then followed by the “.rslt” extension.

For calculations in which geometry based output requests are included (see section
2.6), an output Exodus file will be created. The Exodus file is a binary file
containing the original geometry plus any any requested output variables. The
output Exodus file name is determined from the geometry file name. The base
name of the output is taken from the geometry file by inserting the text “-out”
just before the file name extension. The output Exodus file will be written to the
same directory where the geometry file is stored. If executing Salinas on a parallel
machine, the Exodus output files should be written to the raid disks for reasonable
performance.
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2.10 BOUNDARY

Boundary conditions are specified within the Boundary section. Either node sets
or side sets may be used to specify boundary conditions. By default, they are
specified in the basic coordinate system, but an alternate system my be specified
using the “coordinate” keyword (see section 2.18). The current implementation is
very inefficient if any but the basic system is used (they are treated as MPCs). The
following example illustrates the method.

BOUNDARY
nodeset 1
coordinate 7 // apply in coordinate system 7

x = 0.1 // constrain x=0.1 for all nodes in set
y = 0 // constrain y=0 throughout nodeset 1
RotZ = 0 // constrain the rotational dof about Z

nodeset 2
fixed // constrain all structural dofs in nodeset 2

sideset=4
fixed // constrain all nodes in sideset 4

END

The descriptors for the boundary conditions are, X, Y, Z, RotX, RotY, RotZ,
and fixed. An optional equals sign separates each descriptor from the prescibed
value. The value fixed implies a prescribed value of zero for all degrees of free-
dom. Note, that only constant prescribed displacements are allowed on nodesets
and sidesets.

2.11 LOADS

Loading conditions are specified within the loads section. The following example
illustrates the method.

LOADS
nodeset 3

force = 1.0 0. 0.
scale = 1000.
function = 2

nodeset 5
force = 0. -1 0

body
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gravity
0.0 1.0 0
scale -32.2

sideset 7
pressure 15.0

sideset 12
traction = 100.0 20.0 0.0

END

Loads may be applied to node sets, side sets or the entire body (in the case of inertial
loads). Loads are applied in the global coordinate system using nodesets. Pressure
loads may be applied using side sets. The pressure is always normal to the surface.
All loads applications are additive.

The syntax followed is to first define the region over which the load is to be applied
(either nodeset, sideset or body). Each such region defines a load set. For each
such definition, one (and only one) load type may be specified. However, any region
definition may be repeated so that forces and moments may be applied using the
same node set. The load types are,

Option Parameters
force val1 val2 val3
moment val1 val2 val3
gravity val1 val2 val3
pressure val1
traction val1 val2 val3

Following the definition of the load type, a vector (or scalar in the case of pressure
loads) must be specified. The total force is the product of the load vector, the
scale factor, and the nodeset distribution factor found in the exodus file. Note that
in some cases the nodeset distribution factor may be zero. In that case, the total
applied force will also be zero. The pressure loading may only be applied to side
sets. The total pressure is the product of the scale factor, pressure (scalar) and
sideset distribution factors. If the pressure loading in NOT normal to the sideset,
the traction capability should be used. NOTE: Pressure will act on a surface in
a compressive sense, while a traction can be specified as any vector which will act
on the sideset specified in the direction given by the triple values specified after
traction. Also, traction loads are applied on the faces of the shell elements in a
piecewise manner, i.e., the traction load acting on a face of the element is assumed
constant. If the distribution factors on the nodes of the element vary, the average
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of the load ( element per element ) is assumed.

NOTE: If a function is defined for a particular load, then it is assumed to be a
transient load. If there is no function defined then it is assumed to be a static
load. The solution procedure chosen will only use the loads that are applicable,
i.e., a static solution will only use static loads and a transient solution will only use
transient loads.

2.11.1 Consistent Loads

The loads for all of the 3-D and 2-D elements are calculated in a consistent fashion
when a pressure load is applied. For more details on the implementation, see the
programmer’s notes.

2.11.2 Time Varying Loads

Additional options provide the capability of varying the load over time. The LOADS
options include,

• scale with one parameter provides a scale factor to be applied to the entire
load set. Only one scale may be provided per load set.

• function. A time varying function may be applied by specifying a function
ID. Only one function may be applied per load set. The function is defined in
the FUNCTION section (see section 2.19 on page 62). The loads applied at
time t for a particular load set will be the sum of the force or moment vectors
summed over the nodes of the region and multiplied by the scale value and
the value of the time function at time t.

Variation of the load over space is accomplished using node set or side set distri-
bution factors. If these are provided in the Exodus file, the load set is spatially
multiplied by these factors. The total loading is the sum of the loads for each load
set summed over all the load set regions.

2.12 Load

Loading conditions for all multicase solutions are specified within the load section.
See paragraph 2.1.1 for information on specifications for multicase solutions. The
LOAD section is identical to the LOADS section described in the previous para-
graph (2.11), except the the section begins with the load, and a load step identifier
is required. The following example illustrates the required input.
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LOAD=57
nodeset 3

force = 1.0 0. 0.
scale = 1000.
function = 2

nodeset 5
force = 0. -1 0

END

Unlike the Loads section, there may be multiple load sections in the file, with
each entry corresponding to an applicable step in the solution.

2.13 RanLoads

The RANLOADS section is used to provide input information for spectral input
to a random vibration analysis. Note that this input will contain both a spatial
and temporal component. The ranloads section contains the following required
keywords.

Parameter Argument Description
matrix Integer matrix-function identifier
load Integer row/column identifier

The matrix keyword identifies the appropriate matrix-function (see section
2.20). The matrix-function determines the dimensionality of the input (using the
dimension keyword). It also determines the spectral characteristics of the load.

The spatial characteristics are determined in load sections within the ranloads
definition. There must be exactly as many load sections as the dimensionality of
input. For example, if the SFF matrix is a 3x3, then there should be 3 separate
load sections. Each load section within the ranloads block must be followed by
an integer indicating to which row/column it corresponds. The details of each
load section are identical to the over all loads section (see 2.11) except that no
time/frequency function is allowed. Note that only one load is required per row
of the SFF matrix, but each entry of the matrix may have a spectral definition
(identified by a real and/or imaginary function).

The following example illustrates the definition of a single input specification.
The loading is scaled so that a 1000 lb mass located on the input point (in nodeset
12 here) is scaled to produce a unit g2/Hz loading.

RANLOADS
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matrix=1
load=1
nodeset 12

force=0 1 0
scale 1.00e3 // needed to convert to g
// loads input in lbs. The PSD is in g^2/Hz.
// F = accel * mass
// = accel * (scale_factor)
// = accel * ((1000*.00259)*384.6)

END

2.14 Contact Data

Contact surfaces provide the ability to model structures that may be in contact part
of time. Examples include a tire rolling on the road, rattling in a joint and structures
under impact. Note that a tied surface capability is available for the apecial case
where the surfaces will always be in contact (see section 2.15). Contact surfaces are
inherently nonlinear. The simplest of such structures are characterized by friction-
less contact, i.e. a restorative force is provided only in the normal direction, and
slippage occurs tangent to the normal. This is the only type of contact currently
supported in Salinas, though frictional and sticking contact are under development.

Contact is specified as shown in the example below.

CONTACT DATA
Surface 33,17
Friction Static = 0.0
Search Tolerance = 1e-8

END

The example above defines a region of contact between sidesets 33 and 17. While
contact is defined here between sidesets, it is currently limited to node/node contact.
The coefficient of static friction is defined to be zero (the default). The search
tolerance sets the radius for search for the nodes on the surface. The relevant
parameters for contact are shown in Table 13.

The only method currently supported is node/node which is specified (perhaps
confusingly) by the keyword “Surface”. Also, the only supported friction model
is none, specified by a coefficient of static friction of zero. Contact is enforced
within the solver, and is currently supported only when using the FETI solver.
Enforcement does not truly require distinguishing between the master and slave
surface. The contact is enforced symmetrically. We have adjusted the input to be
as consistent as possible with other Sandia codes.
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Table 13: Contact Data Parameters

Parameter type description
Surface integer pair master and slave sideset

separated by comma or space
Friction Static Real coefficient of static friction

(defaults to zero)
Search Tolerance Real Radius of search for paired nodes

defaults to 1e-8

2.15 Tied Surfaces

Tied surfaces provide a mechanism to connect surfaces in a mesh that will always be
in contact. Because the surfaces are always tied, the constraints may be represented
by a set of linear multipoint constraints (see section 3.25). Tied surfaces are also
known in the literature as “glued surfaces” or as “tied contact”. They are used
almost exclusively to combine two surfaces of a mesh that have not been meshed
consistently.

There are a number of ways of combining surfaces that have not been consistently
meshed. The simplest method (and the only one currently under development in
Salinas) constrains the nodes of the slave surface to lie on the master surface. In
this method, the constraint is called inconsistent because the mesh does not ensure
that linear stress will be maintained across the boundary. The stress and strain in
the region of the constraint will be wrong. However, loads are properly transferred
across the boundaries, so a few element diameters away from the boundary, the
stresses and strains should be approximately correct.

In the future, the inconsistent tied surface will be transitioned into a fully con-
sistent algorithm. No change in the input is expected to achieve this. It is achieved
by a modification of the element stiffness matrices on the boundary.

Tied surfaces are specified by a listing of master and slave side sets. Any number
of tied surfaces may be specified in the input, i.e. more than one tied surface section
may occur in the input. Each tied surface section represents a single logical pairing
of constraint side sets.

TIED DATA
Surface 12, 18
search tolerance = 1e-7

END

In the example above, sideset 12 is defined as a master surface. Side set 18 is the
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slave surface.
The relevant parameters for tied surfaces are shown in Table 14.

Table 14: Tied Surface Parameters

Parameter type description
Surface integer pair master and slave sideset

separated by comma or space
Search Tolerance Real Radius of search for paired nodes

defaults to 1e-8

2.16 BLOCK

Each element block in the Exodus file, must have a corresponding BLOCK entry
in the input file. This section contains information about the properties of the
elements within the block. These properties depend on the element type. Clearly
shells will require a thickness, while it is meaningless for solids. An example is
provided below.

// the following element block is Tria3
BLOCK 32

material 2
tria3
thickness 0.01

END

// the following element block is hex.
// exodus tells us it is an 8-node hex.
// The default integration mode is "UNDER"
// The only required argument is the material card
BLOCK 34

material 3
END

BLOCK 3
Coordinate 1
Spring
Kx=1e6
Ky=0
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Kz=0
END

A list of the applicable attributes for different element types is shown in Table 15.
Each element type is outlined in section 3.

In addition, the reference coordinate system may be defined in a block. This
definition applies to all the elements of the block and the associated materials. At
this point, the coordinate system is only recognized for a subset of the elements
(solid elements and springs). Further information on coordinate systems may be
found in section 2.18.

Table 15: Element Attributes

Element Type attr keyword Description
ConMass 1 Mass concentrated mass

2 Ixx xx moment of inertia
3 Iyy yy moment of inertia
4 Izz zz moment of inertia
5 Ixy xy moment of inertia
6 Ixz xz moment of inertia
7 Iyz yz moment of inertia

8,9,10 offset offset from node to CG
Beam 1 Area Area of beam

2,3,4 Orientation orientation vector. For
the orthogonal direction

5 I1 First bending moment
6 I2 Second bending moment
7 J Torsion moment

9,10,11 offset beam offset
Spring 1 Kx spring constant in X

2 Ky spring constant in Y
3 Kz spring constant in Z

Triangle 1 thickness thickness
2 offset shell offset in normal direction

Quad 1 thickness thickness
2 offset shell offset in normal direction
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2.17 MATERIAL

Most element blocks must specify a material. Details of that material are included
in the material section. The material section contains a material identifier (which
is usually an integer, but may be any string), an optional name keyword followed
by a material name, a material type keyword and the necessary parameters. The
different material types and their parameters are summarized in Table 17.

For example,

MATERIAL 3
isotropic
name "steel"
E 30e6
nu .3

END

Deterministic materials may be input as isotropic, orthotropic, orthotropic prop,
anisotropic, or isotropic viscoelastic. In addition, stochastic isotropic mate-
rials may be specified as S isotropic.

2.17.1 Isotropic Material

Isotropic materials require specification of two of the following parameters.

Parameter Description
E Young’s Modulus
nu Poisson’s Ratio
G Shear Modulus
K Bulk Modulus

Isotropic materials are the default, and the keyword isotropic is not required.

2.17.2 Anisotropic Material

Anisotropic materials require specification of a 21 element Cij matrix corresponding
to the upper triangle of the 6x6 stiffness matrix. Data is input in the order C11,C12,
C13, C14, C15, C16, C22, etc. The Cij must be preceded by the keyword Cij. The
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keyword Anisotropic is also required. Materials are specified in the order xx,
yy, zz, zy, zx, xy. Note that this ordering varies in the literature. It differs from
the ordering in Nastran and Abaqus, but is consistent with much of the published
materials science data. An example input file with an anisotropic material is found
in section A.2.

2.17.3 Orthotropic Material

Orthotropic material entry is identical to the anisotropic case with the exception
that the keyword orthotropic replaces anisotropic, and only 9 Cij entries are
specified. These entries correspond to C11, C12, C13, C22, C23, C33, C44, C55 and
C66. Like the anisotropic material definition, the order is xx, yy, zz, zy, zx, xy. Al-
ternatively, an orthotropic material may be specified using orthotropic prop and
the material parameters E1, E2, E3, nu23, nu13, nu12, G23, G13, and G12.

If sensitivity analysis is being performed (see section 2.21), one indicates the
parameters for analysis by following these parameters with the +/- characters. In the
first entry method, a sensitivity analysis must be performed on all 9 parameters. In
the second, each individual parameter must be requested individually. The concept
is that the sensitivity is performed with respect to the labelled parameters, i.e. either
the set of Cij parameters, or each individually labelled E1 term.

2.17.4 Stochastic Material

For stochastic materials, all material properties are determined by a table look-up,
based on the element ID. The file name for the table lookup is taken from the name
identifier. The file is a standard text file with the first column corresponding to the
element ID. The second column is the bulk modulus, K, and the third (and final)
column is the shear modulus, G. The element IDs in the file need not be continuous,
but they must be sorted in increasing order. Thus the S isotropic data lookup file
contains the element ID, the bulk modulus and the shear modulus, with one line for
each element. The stochastic material model is very preliminary and is expected to
change significantly in the next few years.

2.17.5 Linear Viscoelastic Material

Linear viscoelastic materials require the specification of the density, and the limiting
moduli E g, E inf, G g, G inf. The subscript ’g’ refers to the glassy modulus, which
occurs at t = 0, or ω = ∞. The subscript ’inf’ refers to the rubbery modulus, which
occurs at t = ∞, or ω = 0. In addition the Prony series for the viscoelastic materials
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have to be specified using keywords K coeff, K relax, G coeff, and G relax. All of
these parameters are required.

For the bulk modulus K, the Prony series parameters are defined by the following
equation:

K(t) = Kinf + (Kg −Kinf )
∑

i

Kcoeff [i] ∗ e
− t

Krelax[i] (11)

A similar equation holds for the shear modulus. Note that, the K coeff and G coeff
MUST sum to 1.0 (individually). Otherwise, the formulation is inconsistent. That
is, ∑

i

Kcoeff [i] =
∑

i

Gcoeff [i] = 1.0 (12)

Note that the number of terms in K coeff and K relax must be the same, and the
number of terms in the G coeff and G relax must be the same. However, the number
of terms in the K series does not have to equal the number of terms in the G series.
Thus, one could simulate a case where the material shear modulus G is viscoelastic,
but the bulk modulus is not. In this case, the latter would have no terms in its
series.

Optional parameters for viscoelastic materials include reference (T 0) and cur-
rent temperature (T current), and the WLF constants C 1 and C 2. (more expla-
nation of the Williams-Landel-Ferry (WLF) equation is given below). Also, two
constants may be specified that describe the curve fit for the shift function, a T1
and a T2, in the case when T current - T 0 is negative. The equation was provided
by Terry Hinnerichs and is a good characterization of many viscoelastic materials.
Its form is

a T = a T1 ∗ (1− ea T2∗(T current−T 0)) (13)

If these optional parameters are not specified, default values are used, as shown
in the table below. Note that equation 13 will only be used to compute the shift

Table 16: Default Parameters for Viscoelastic Materials

parameter default value
T 0 0.0
T current 0.0
C 1 15.0
C 2 35.0
aT 1 6.0
aT 2 .0614
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functions if the parameters aT 1 and aT 2 are specified. Otherwise, the standard
WLF equation is used, as described below.

If the parameters aT 1 and aT 2 are not specified, then the shift factors are
computed using the WLF equation. This equation is frequently used to determine
an approximate set of shift factors when experimental data for a particular material
is not at hand. The shift factors computed from this equation are used to scale the
coeffecients in the Prony series. The shift factors computed from the WLF equation
are a strong function of temperature. The WLF equation is as follows

log(aT ) = − C 1(T current− T 0)
C 2 + T current− T 0

(14)

where T current is the current temperature in the block, and T 0, C 1, and C 2 are
material parameters that are determined experimentally. If C 1 and C 2 are not
known for a particular material, then the default alues given above are typically
used. Typically, T 0 is the glass transition temperature of the material of interest.
More explanation of the WLF equation can be found in the books by Aklonis,5 and
Ferry.6

After computing the shift factors using one of the two approaches given above,
the relaxation times are shifted. This occurs before computations begin, using the
relations

Gcoeff [i] = aT Gcoeff [i] (15)
Gcoeff [i] = aT Gcoeff [i] (16)

(17)

These shifts are automatically computed given T 0, T current, C 1, and C 2, so that
the user does not need to shift the relaxation times beforehand. Note that if these
parameters are not specified in the input file, then they are given default values that
result in no shifting of relaxation times. In such a case, aT = 1.

An example material block for a linear viscoelastic material looks like:

MATERIAL 9
isotropic_viscoelastic
name "foam"
T_0=0
T_current=25
C_1=1
C_2=2
aT_1=6.0
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aT_2=.06
K_g 30.0e6
K_inf 10.0e6
G_g 10.0e1
G_inf 12.0
K_coeff .5 .5
K_relax 3.0 2
G_coeff .5 .5
G_relax 1 3
density 0.288
END

Note that the coefficients of both K and G sum to 1.0. This is necessary for a
consistent formulation.

A note on viscoelastic materials: currently there are two time integration algo-
rithms available in Salinas, the Newmark-beta method, and the generalized alpha
method. At this time viscoelastic materials only work with the Newmark beta
method.

2.17.6 Density

For solutions requiring a mass matrix, all material specifications require a keyword
density followed by a scalar value.

Table 17: Material Stiffness Parameters

material type parameters
isotropic any two of K, G, E or ν
orthotropic nine Cij entries
orthotropic prop E1, E2, E3, nu23, nu13, nu12, G23, G13, G12
anisotropic 21 Cij entries
S isotropic file containing K and G

2.18 COORDINATE

Coordinate systems may be defined for reference to the materials and boundary
conditions. As reported in the “history” section, nodal results may also be reported
in arbitrary coordinate frames in the history file only (see section 2.7). Note that all
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nodal locations, outputs, etc. are always defined in the basic coordinate system in
the standard exodus files. These new coordinate systems are always defined based
on three locations, which are defined in the basic coordinate system. These locations
are illustrated in Figure 1.

1. The location the origin of the new coordinate system, v1.

2. A point on the Z axis of the new system. This is illustrated in the figure by
the vector v2. Note however, that the location is required, which is the vector
sum of v1 + v2.

3. A point in the X̃Z̃ plane of the new system, illustrated by the vector v3. Note
that vector v3 need not be orthogonal to v2, but it may not be parallel to it.
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Figure 1: Coordinate System Definition Vectors

Coordinate systems for cartesian, cylindrical and spherical coordinates may be de-
fined. In the case of noncartesian systems, the XZ plane is used for defining the
origin of the θ direction only.

This example creates a cylindrical system located at a point (1,1,1) with the cylin-
drical axis in the (0,0,1) direction and the radial coordinate in the global Y direction.

Coordinate 7
cylindrical
1 1 1
1 1 2
1 2 1
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END

The keywords for the coordinate system definitions are:

1. RECTANGULAR or CARTESIAN to define a cartesian system,

2. CYLINDRICAL for a cylindrical, i.e. polar system, and

3. SPHERICAL for a spherical system.

If “input” is selected in the ECHO section then the transformation matrix will
be output in the .rslt file (section 2.5). The transformation matrix is a unitary
matrix which can be used to transform vectors from one system to another. If we
let T be the matrix reported in the .rslt file, then the transformation from the
basic system to the rotated frame is given by,

vnew = T T vbasic

where vnew is the vector in the new coordinates,
vbasic is the vector in the basic system, and
T T is the transpose of the .rslt matrix reported.

While the history file provides a convenient means for transforming coordinates,
its applicability may be somewhat limited. In particular, only a single history file
is written in each analysis, and only one coordinate frame may be output per node
(see section 2.7).

2.19 FUNCTION

Time or frequency dependent functions for transient and frequency response analysis
can be defined using the function section. The following examples illustrate the
use of this section.

FUNCTION 1
type LINEAR
name "test_func1"
data 0.0 0.0
data 0.0150 0.0
data 0.0152 1.0
data 0.030 0.0

END
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FUNCTION 2
// This is a smooth pulse with time duration .05
// it peaks at approximately t=.02 sec with a
// value of 0.945.
// The equation is y(t)=-800*t^2 + 8.9943*sqrt(t)

type POLYNOMIAL
name "poly_fun"
data 0. 0.
data 2.0 -8.0e2
data 0.5 8.9443

END

The keywords for the function definitions are:

1. TYPE to define the functional form,

2. NAME for reference in echo and output, and

3. DATA for the functional parameters.

Currently there are two types of functional forms, linear and polynomial. The
data elements are defined in the context of this form.

2.19.1 Linear Functions

For linear functions, the data elements are points of the function where the user
defines the value of the independent variable (e.g. time) and the corresponding
value of the function. Linear interpolation is used to find all other values of the
function. In order to make the linear interpolation unique, the order of the input
data is important. Input checks will ensure that time on subsequent data points
is always greater than or equal to time on the previous data point so that curves
cannot double back on themselves. For example,

FUNCTION 3
name "illegal_fun"
type linear
data 0.00 0.
data 0.01 1.
data 0.05 1.
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data 0.04 0. //illegal. the first column must never decrease
END
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Figure 2: Linear function #3. ”illegal fun”

Linear functions will extrapolate by using the value of the nearest data point. For
example, in the following function, f(t=0.3) = 0.5.

FUNCTION 5
name "extrap_fun"
type linear
data 0.00 0.
data 0.01 1.
data 0.02 0.5

END
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Figure 3: Linear function #5. ”extrap fun”

2.19.2 Polynomial Functions

For polynomials, the data points given are the exponent of the independent variable
and a scale factor for that term. The independent variable taken to any real power
will always be evaluated as positive. If powers are repeated, their coefficients will
sum. For example,
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FUNCTION 6
name "poly_fun"
type polynomial
data 0.0 0.
data 1.0 1.
data 2.0 0.1
data 1.0 0.5

END

is equivalent to

FUNCTION 6
name "poly_fun"
type polynomial
data 0.0 0.
data 1.0 1.5
data 2.0 0.1

END

The function value as a function of the independent variable t is,

f(t) = 1.5t + 0.1t2.

2.20 MATRIX-FUNCTION

This section provides for input of a matrix function as is used in a cross correlation
matrix for input to a random vibration analysis. In the limit of a single input these
reduce to a single function (as described in the previous section). Note that a matrix-
function can have arbitrary symmetry and can be complex. An important feature
of the matrix-function is that each entry of the matrix is a function of frequency (or
time).

The Matrix-Function is illustrated in the following example.

MATRIX-FUNCTION 1
name ’cross-spectral density’
symmetry=hermitian
dimension=2x2
nominalt=20.1
data 1,1
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real function 1 scale 1.0
data 1,2

real function 12
imag function 121 scale -3.0

data 2,2
real function 22 scale 0.5

END

Matrix functions have the following parameters.

NAME allows you to optionally enter a string by which the matrix-function will
be identified in subsequent messages.

SYMMETRY identifies the matrix symmetry. Options are “none”, “symmetric”,
“asymmetric” and “hermitian”. If the matrix is not square, only “none” can
apply. The default for this optional parameter is “symmetry=none”.

DIMENSION specifies the dimension of the matrix. If not specified, it defaults
to 1x1. The dimension is specified as the number of rows, an “x” and the
number of columns. No space should be entered between the terms.

DATA Each data entry specifies one entry in the matrix-function. The data entry
must be immediately followed by the matrix location specified as a row, col-
umn pair. Again, no spaces may be inserted in the location entry. The data
parameters uses two keywords.

• “real” identifies the real component of the entry. It must be followed by
a function reference, and optionally by a scale factor.

• “imag” identifies the imaginary component of the entry. It must be fol-
lowed by a function definition, and an optional scale factor.

NOMINALT Used only for echoing the matrix values. If input is specified as an
Echo option (see section 2.5) general information from the matrix function are
written to the log file (the .rslt file). If, a nominalt entry also exists, then the
matrix entries are written for that nominal time (or frequency). Only one such
output can be specified. It provides a means of checking the input to assure
the matrix values are correct at a single time (or frequency) value.
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2.21 SENSITIVITY

This section controls global parameters related to sensitivity analysis. Sensitivity
analysis is not performed in Salinas unless this section is present in the input file.
The following example illustrates the legal keywords.

SENSITIVITY
values all
vectors 1 thru 3 5 7 thru 9
iterations 8
tolerance 1e-7

END

The keywords values and vectors are used to control what types of sensitivities
are computed for which cases in the analysis. In modal analysis, these refer to
the eigenvalues and eigenvectors, respectively, and the case numbers represent the
mode numbers. In static and transient analysis, vectors refers to the displacement
vector results, and values has no meaning. Also, in modal analysis, eigenvalue
sensitivities are always computed when eigenvector sensitivities are requested for a
mode. Allowable values are:

vectors all // compute for all cases/modes
vectors none // compute for no cases/modes
vectors // default, same as all
vectors 1 2 3 5 // cases/modes 1,2,3,5
vectors 1 thru 3 5 // using thru to define range

Omitting the keyword vectors (or values) is equivalent to not requesting those
sensitivities; in other words, it is equivalent to vectors none. The keywords
iterations and tolerance are used in computing eigenvector derivatives. The
default values are 10 and 1.0e-06, respectively.

Sensitivity results are scaled by multiplying the derivative with respect to a param-
eter by the nominal value of that parameter. In this was, the units of the sensitivity
coefficients are the same as the units of the nominal response results. Furthermore,
in order to determine the absolute change in a response resulting from a relative
change in a parameter, simply multiply the sensitivity of the response with respect
to that parameter by the relative change. For example, multiply by 0.10 for the
effect of a 10% change in the parameter.
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Sensitivity results are output to the same file as the nominal results. The arrange-
ment of the output varies depending on the analysis. For statics, the nominal result
is output, followed by the sensitivity result for each parameter. For eigenanalysis,
the nominal frequencies and eigenvectors are output, followed by the eigenvalue and
eigenvector sensitivities with respect to the first parameter, the second parameter,
and so on. The eigenvalue sensitivities are placed in the time field of each output
record, just as the frequencies are for the nominal modal parameters. For transient
analysis, the nominal response for each time step is output, followed by the sensitiv-
ities for that time step. Then the nominal results for the next time step are output,
and so on.

The selection of parameters is controlled by the inclusion of a +/- symbol following
a parameter in the input deck. Examples of valid sensitivity parameter definitions
are:

MATERIAL 1
E 10e6 +/- 1e6 // absolute tolerance specified
density 2.59e-4 +/- // no tolerance, use default

END

BLOCK 1
area 0.10 +/- 5 % // relative tolerance specified

END

BLOCK 2
thickness +/- 1 % // relative to exodus attr

END

LOADS
nodeset 1
force 0. 0. 1000 +/- 0 0 10 // tolerance for vector param

END

Note that the tolerances are specified on the parameters where they normally appear
in the input file. That is, these definitions do not appear in the SENSITIVITY
section.
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2.22 DAMPING

This section allows input of simple global viscous damping models, using either
modal damping rates or stiffness and mass proportional damping. The various
options for the DAMPING section are shown in Table 18.

Table 18: DAMPING Section Options
Parameter Description
alpha mass proportional damping parameter (real)
beta stiffness proportional damping parameter (real)
gamma uniform modal damping rate (% of critical) (real)
mode individual modal damping ratio (fraction of critical)

(integer, real)
ratiofun index of function to define modal damping ratios

The damping matrix or modal damping coefficient is determined by summing contri-
butions from all damping parameters given in Table 18. For modal superposition-
based analysis, including modalfrf, modalranvib and modaltransient, all
the given parameters are defined. For direct implicit transient analysis, the modal
damping parameters apply only to modes for which eigenvalues and eigenvectors
have previously been computed. This depends on the presence of the keyword
nmodes in the solution section of the input file.

The effect of the mass and stiffness proportional parameters on modal damping
depends on the frequencies of the modes. For modal-based analysis, the damping
rate for mode i with radial frequency ωi is given as

ζi = α/(2ωi) + β · ωi/2 + Γ + mode[i] + ratiofun(i)

where the viscous damping term in the modal equilibrium equation is 2ζiωi. For
example the following damping input section could be used in a modal transient
analysis.

DAMPING
alpha 0.001
beta 0.00005
gamma 0.005
mode 1 0.01
mode 2 0.005
mode 3 0.015

END
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It produces the following damping ratios.

Mode modal damping ratio modal viscous damping term
1 0.015 + 0.001/(2ω1) + 0.00005ω1/2 0.030ω1 + 0.001 + 0.00005ω2

1

2 0.010 + 0.001/(2ω2) + 0.00005ω2/2 0.020ω2 + 0.001 + 0.00005ω2
2

3 0.020 + 0.001/(2ω3) + 0.00005ω3/2 0.040ω3 + 0.001 + 0.00005ω2
3

In direct (i.e. non-modal-based) transient analysis, the same damping input section
would produce the same damping ratios if all the modes used in the modal transient
analysis were also available for the direct transient. Conversely, if no modes were
available, the above damping input section would produce a physical damping matrix
C = 0.001M + 0.00005K.

The ratiofun keyword permits definition of modal damping terms based on a fre-
quency dependent function. The associated function definition (see section 2.19)
provides a table lookup for damping ratios. For example, consider a system with
modes at 200 and 500 Hz. The following example will establish modal damp-
ing ratios of .03 and .06 respectively. The function describes a line defined by
ratio(f) = 0.01 + 0.1/1000f .

DAMPING
ratiofun=100

END

FUNCTION 100
type=linear
data 0 0.01
data 1000 0.11

END

2.23 NOX

This section allows input of nonlinear solver options to the NOX nonlinear solver.
Currently, only a small subset of the many options available in NOX and described at
http://software.sandia.gov/nox are able to be specified. These include the following:
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Table 19: NOX Nonlinear Solver Options
Option Choices
nonlinear solver method trust region based*

line search based (default)
nonlinear direction method newton (default)

modified newton
steepest descent
nonlinearcg

nonlinear linesearch method full step (default)
polynomial
more thunte
backtrack
nonlinearcg

*Default options for this choice are used. Specification of direction and linesearch
methods apply only to line search based.

3 Element Library

Short descriptions of each of the types of elements follow. Most of the parameters
for the element are supplied either in the database file (i.e. Exodus file) or in the
text input file (*.inp). If parameters exist in both locations, the values specified in
the text input will over ride the exodus database specification.

3.1 Hex8

The Hex8 is a standard 8 node hexahedral element with three degrees of freedom
per node. The Hex8 element has 8 integration points. The shape functions are
trilinear. It supports isotropic and anisotropic materials.

There are two variations of Hex8. The default element is an under integrated Hex
with properties similar to those of most commercial finite element codes. The un-
derintegration produces an element that is soft relative to a fully integrated element.
It may be specified by Hex8 or by Hex8u.

The fully integrated Hex is specified by Hex8F. While it performs adequately when
the element shape is nearly cubic, it performs quite poorly for larger aspect ratios.
For most problems involving bending the Hex8u is recommended.
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3.2 Hex20

The 20 node variety of Hex element provides quadratic shape functions. It is a far
better element than the Hex8, and should be used if possible. The Hex20 element
in Salinas is very similar to elements found in most commercial codes.

3.3 Wedge6

The Wedge6 is a compatibility element for the Hex8, it is not recommended that
the entire mesh be built of Wedge6 elements. They are primarily intended for
applications where triangles are naturally generated in mesh generation.

3.4 Wedge15

The Wedge15 element adds midside nodes to the Wedge6. Like the Hex20 and
Tet10, it has quadratic shape functions, and is a very good element.

3.5 Tet4

This is a standard 4 node tetrahedral element with three degrees of freedom per node.
The Tet4 element has one integration point. The shape functions are linear. It is
not recommended to use only Tet4 elements for the entire mesh because standard,
linear tetrahedra are typically much too stiff for structural applications. The Tet4
is provided primarily for those applications where a mesh may be partially filled
with these elements. If a model is constructed of all tetrahedral elements (as by an
automatic mesh generator), the Tet10 is strongly recommended over the Tet4.

3.6 Tet10

This is a standard 10 node tetrahedral element with three degrees of freedom per
node. The Tet10 uses 4-point integration for the stiffness matrix and 16-point
integration for the mass matrix. The shape functions are quadratic. This is a very
good element for use in most structural analyses.

3.7 QuadT

The QuadT is a 4-node quadrilateral shell with membrane and bending stiffness.
The element properties and element stiffness and mass matrices are developed by
internally generated Tria3 elements. It is not an optimal element, but is adequate
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for most applications. A more optimal element is currently under development. See
the description of the Tria3 for details on the element.

3.8 Quad8T

The Quad8T is an 8-node quadrilateral shell with membrane and bending stiffness.
The element properties and element stiffness and mass matrices are developed by
internally generated Tria3 elements. It is not an optimal element, but is adequate
for most applications. Shape functions are NOT quadratic. It is compatible with
the Tria6 element, as well as with other elements based on the Tria3. See the
description of the Tria3 for details on the element.

3.9 TriaShell

The TriaShell element has 3 nodes with 6 degrees of freedom (DOF) per node. The
TriaShell is generated by decoupling the membrane DOF and the bending DOF.
Allman’s Triangular (AT) element7 models the membrane DOF, while the Discrete
Kirchoff Triangle8 (DKT) models the bending DOF. These two elements are com-
bined into the TriaShell element. It currently supports only isotropic materials.
The TriaShell, like the Tria3, has a single required attribute, thickness.

3.10 Tria3

The Tria3 is a three dimensional triangular shell with membrane and bending
stiffness. There are 6 degrees of freedom per node. In most respects it is very
similar to the TriaShell. It is the default element for triangular meshes. The
Tria3 was provided by Carlos Felippa of UC Boulder. It currently supports only
isotropic materials. It has a single required attribute, thickness, which may be
specified in either the exodus file or the text input file.

The element stiffness matrix for triangles consists of the sum of two independent
contributions from membrane and bending. These contributions may be arbitrarily
scaled using the parameters membrane factor and bending factor. Each of
these parameters default to 1.0. They must be specified in the text input file in the
block definition.

Attribute Keyword Description
1 thickness Thickness of the shell
2 offset offset for the shell

N/A membrane factor scale factor for membrane
N/A bending factor scale factor for bending
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The thickness may either be entered in the Exodus file, or in the input file. If an
attribute is entered in both locations, the value in the input file will be honored.
An example element block is shown below.

Block 3
Tria3
Thickness 0.01
material 71
membrane_factor=0 // option to turn off membrane stiffness

End

3.11 Offset Shells

Any shell may be offset by specifying an offset. This single number is multiplied by
the element normal to arrive at an offset vector. The resulting mass and stiffness
properties are equivalent to the stiffness generated by translating the shell by the
offset vector, and constraining the resulting offset nodes to the untranslated nodes
using rigid links. The performance is vastly better than the constraint approach.
Note that for curved surfaces there may be modeling issues with offset elements
since there is no change in curvature with the change in radius. In the .inp file the
element offset is specified as,

offset=-3.14e-2

Offsets may also be specified in the exodus file. For shell elements these are
specified in the attributes 2. Note however, that at this time there are few tools to
support model building.

3.12 HexShell - under development

The 8 noded hexshell is a hybrid solid/shell element. It is meshed as a standard hex
element, but the formulation of the element is similar to that of a shell. Unlike a
shell element, the thickness is determined by the mesh. But, the element is designed
to operate with many of the same features as shell elements even when it becomes
very thin. Details of the element formulation are available in a separate report (Ref.
9).

The hexshell has a preferential thickness direction which is essential to it’s correct
operation. The thickness direction may be specified in any one of three ways.

1. Using the tcoord, it may be specified by a coordinate frame.

2. An exodus side set may be attached to one face of all the elements in a block
using the keyword sideset.
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3. Salinas may attempt to determine the thickness direction from the topology.
This is the default option (because it is the easiest for the user), but it is also
the least robust.

When the element thickness must be determined by the topology, the mesh must
follow these requirements. The elements in the block must form a sheet. More than
one disconnected portion of the sheet is possible, but all portions must adhere to
these requirements.

• Every element in the sheet must have at least two neighbors, e.g. the sheet
can’t be a single element. NOTE... at this time, this is true for the parallel
decomposed mesh as well. The portions of the sheets found in each subdomain
can not be a single element. We must be able to eliminate the thickness
direction of each element by it’s neighbor connectivity.

• The elements in the sheet may vary in thickness, but the sheet must be exactly
one element thick.

• The elements must be connected as a single sheet. Thus, if the sheet turns
a corner, it must do so gently. The algorithm will fail if any element in the
sheet is connected on the top or bottom to another element in the sheet.

The HexShell requires a material specification. Optional parameters include the
sideset or the coordinate frame and coordinate direction used to determine the
thickness direction. The sideset keyword must be associated with a defined sideset
in the model. The tcoord keyword requires two integer arguments. The first is
the ID of the coordinate system referenced. The second is the direction (1,2 or 3)
associated with the coordinate system.

# Keyword Arguments Description
1 sideset ID sideset to specify thickness direction
2 tcoord ID and direction coordinate frame and coordinate direction

An example specification follows.

Block 88
HexShell
sideset 88
layer 1

material 1
coordinate 1
thickness .4

layer 2
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material 2
coordinate 2
thickness 0.6

End

BLOCK 89
HEXSHELL
tcoord 5 1 // use coordinate frame 5, "x" direction
material 89

END

The formulation of the HexShell supports multiple layers of orthotropic mate-
rials. Each layer has an associated material, normalized thickness and coordinate.
The coordinate is provided to permit specification of the material coordinate. The
thickness specifies the relative thickness of each layer. The total thickness is deter-
mined from the element topology, but relative thicknesses for each layer must be
specified. If only one layer is specified, then the layer keyword is not required, and
the relative thickness is irrelevant (and not required).

3.13 Beam2

This is the definition for a Beam element based on Cook’s (Ref. 2) development.
This beam is similar to the standard Nastran CBAR element. It has no shear
contribution. The Beam2 has 7 required parameters, and an optional offset vector.

# old order # Keyword Description
1 1 Area Area of beam
2 5 I1 First bending moment
3 6 I2 Second bending moment
4 7 J Torsion moment

5,6,7 2,3,4 Orientation orientation vector
8,9,10 8,9,10 offset beam offset vector

No stress or strain output is available for beams. Beams are restricted to isotropic
materials. Attributes may either be entered in the Exodus file, or in the input file.
Attributes in the exodus file must be in the order specified in the table above. If
an attribute is entered in both locations, the value in the input file will be honored.
Two attribute orderings are currently supported in Salinas because of inconsistencies
in preprocessing tools. See the discussion on “OldBeam” in section 2.3.

The following section illustrates the definition of a Beam2 block.
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Block 3
Beam2
Area 0.71
I1 .05
I2 5e-2
J 0.994
orientation 1.0 -1.0 0.9
material 7

End

Beams may be offset by specifying an offset vector. The resulting mass and
stiffness properties are equivalent to a the stiffness generated by translating the
beam by the offset direction, and constraining the resulting offset nodes back to the
untranslated nodes using rigid links. Note that for curved surfaces there may be
modeling issues with offset elements, since there is no change in curvature with the
change in radius. In the .inp file the offset is specified as,

offset=-3.14e-2 0.11 0.99

Offsets may also be specified in the exodus file. For beams these are specified in
the attributes 8, 9 and 10. Note however, that at this time there are few tools to
support model building.

3.14 OBeam

These beams are provided by Carlos Felippa of UC Boulder. They are similar to
the simple beams of Beam2. They use identical parameters. Because of this
duplication, these beams will probably be eliminated in the future.

3.15 Truss

This is the definition for a Truss element based on Cook (Ref. 2). Trusses have
stiffness in extension only. The Truss has 1 parameter.

# Keyword Description
1 Area Area of truss

No stress or strain output is available for trusses.
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3.16 ConMass

Concentrated masses are used to apply a known amount of mass at a point location.
Because many meshing tools build beams as a building block for ConMass, the
geometry definition may be either a line or a point, i.e. the Exodus file element
types are BEAM, BAR, TRUSS or SPHERE. If a beam is used, all the mass
is associated with the first node of the beam.

Parameters for the ConMass are listed below. Because of difficulties in translation
or generation of the model, the parameters found in the exodus file are not normally
used for a ConMass. This avoids the confusion generated when mass constant
defaults may have been taken from beams for example. As a result, all parameters
must be specified in the input or the analysis will fail.

This behavior can be tedious however, if many concentrated masses are found
in the model, and if the analyst is confident that the attributes are appropriate for
these elements. In this case, use the ConMassA element. It is identical to the
ConMass, but allows attributes.

# keyword Description
1 Mass concentrated mass
2 Ixx xx moment of inertia
3 Iyy yy moment of inertia
4 Izz zz moment of inertia
5 Ixy xy moment of inertia
6 Ixz xz moment of inertia
7 Iyz yz moment of inertia

8,9,10 offset offset from node to CG

As an example element block,

Block 5
ConMass
Mass 1000.0
Ixx 1.0
Iyy 2.0
IZZ 1.5
offset 30.0 40.0 50.0

End

Note: While offsets are provided for concentrated masses, their applicability
depends on the model. In particular, an offset is meaningless if applied on a node
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for which there is no rotational degree of freedom. Conceptually, we are attaching
the mass on the end of a long stiff beam. If that beam is attached only to a solid,
it is free to rotate which is a model error. Salinas eliminates the offset in this case
so the model is usable.

3.17 Spring

The Spring element provides a simple spring connection between two nodes in a
model. Note that the direction of application of the spring should be parallel to a
vector connecting the nodes of the spring. It is usually preferable to have the nodes
of the spring be coincident. Springs are defined in the exodus database using BEAM
or BAR elements.

The Spring element has three required parameters (the translational spring stiff-
nesses). Rotational parameters are supported using the RSpring element described
in section 3.18. Currently there is no way to attach off-diagonal elements, i.e. there
is no Kxy spring element. If that is required, a combination of a spring and a
multipoint constraint must be used.

Springs can be defined in user defined coordinate systems.

# Keyword Description
1 Kx translational spring constant in X
2 Ky translational spring constant in Y
3 Kz translational spring constant in Z

As an example element block,

Block 51
Spring
Coordinate 7
Kx 1e6
Ky 1.11E7
Kz 1000

End

3.17.1 Spring Parameter Values

It is strongly recommended that all three values of the spring constants be nonzero.
This is especially important in parallel analysis performed using domain decom-
position. Many domain decomposition tools may partition the model such that
zero spring constants lead to singular domain stiffness matrices. This is true even if
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other elements may eliminate the singularity. This can cause the solver (particularly
FETI) to fail.

While setting nonzero spring stiffness helps to avoid solver problems, the un-
derlying domain decomposition problems still exist for parallel calculations. At the
time of this writing, all available domain decomposition tools have difficulty with
linear elements and particularly with springs. This invariably leads to load balance
problems, and may introduce other problems. In many cases in large models, it may
be better to replace the spring elements by solid element meshes which more accu-
rately represent the physical connection. While there are more degrees of freedom
in the calculation, the accuracy is enhanced, and domain decomposition problems
are largely eliminated.

3.18 RSpring

The RSpring element provides a simple rotational spring connection between two
nodes in a model. It is usually preferable to have the nodes of the spring be coinci-
dent. RSprings are defined in the exodus database using BEAM or BAR elements.

The RSpring element has three required parameters (the rotational spring stiff-
nesses). It is strongly recommended that all three components have some stiffness.
This is particularly important when doing parallel analysis (see the discussion in
section 3.17.1). Translational stiffness require the use of the Spring element de-
scribed in section 3.17. Currently there is no way to attach off diagonal elements, i.e.
there is no Kxy spring element. If that is required, a combination of an RSpring
and a multipoint constraint must be used.

RSprings can be defined in user defined coordinate systems. The relevant pa-
rameters are listed in the table.

# Keyword Description
1 Krx rotational spring constant in X
2 Kry rotational spring constant in Y
3 Krz rotational spring constant in Z

As an example element block,

Block 52
RSpring
Coordinate 7
Krx=1e6
Kry = 1.11E7
Krz 0.1
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End

3.19 Spring3 - nonlinear cubic spring

The Spring3 element provides a nonlinear spring connection between nodes in a
model. Note that the direction of application of the spring should be parallel to a
vector connecting the nodes of the spring. It is usually preferable to have the nodes
of the spring be coincident. Springs are defined in the exodus database using BEAM
or BAR elements.

The Spring3 element has nine required parameters (the translational spring stiff-
nesses). There is no way to attach off diagonal elements, i.e. there are no Kxy spring
elements. If that is required, a combination of a spring and a multipoint constraint
must be used.

The force applied by the Spring3 is defined as a cubic polynomial in each of
the coordinate directions. Thus,

Fx = Kx1 · ux + Kx2 · u2
x + Kx3 · u3

x (18)

For linear analyses, only the first term is used.
Cubic springs may be defined in user defined coordinate system.

# Keyword Description
1 Kx1 translational linear spring constant in X
2 Ky1 translational linear spring constant in Y
3 Kz1 translational linear spring constant in Z
4 Kx2 translational quadratic spring constant in X
5 Ky2 translational quadratic spring constant in Y
6 Kz2 translational quadratic spring constant in Z
7 Kx3 translational cubic spring constant in X
8 Ky3 translational cubic spring constant in Y
9 Kz3 translational cubic spring constant in Z

As an example element block,

Block 51
Spring3
Coordinate 7
Kx1 1e6
Ky1 1.11E7
Kz1 0
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Kx2 0
Ky2 0
Kz2 0
Kx3 1e4
Ky3 1.11E5
Kz3 0

End

3.20 Dashpot

A dashpot represents a damping term proportional to velocity, i.e. Coulomb fric-
tion. Dashpot elements combine a coulomb friction damper with a simple linear
spring. The spring is included to avoid singular stiffness matrices when dashpots
are connected without springs. Dashpots are currently only used in transient dy-
namic analyses. For other analyses only the spring term will be used.

The damping factor is the damping matrix entry. It has units of force·time/length.
For a single degree of freedom system with a mass=M , the following equation is sat-
isfied.

K · u + c · u̇ + M · ü = f(t) (19)

Currently dashpots are defined in the basic coordinate system only. Because
they are single degree of freedom elements, the direction must also be defined (i.e.
cid=1, 2 or 3). There are three parameters. All are required.

# Keyword Description
1 K translational linear spring constant
2 c damping factor
3 cid coordinate direction (1, 2 or 3)

As an example element block,

Block 51
Dashpot
cid=1 // dashpot is in the X direction
K=1e6
c=1e5

End

Dashpots may be represented in the exodus file with any linear element. The
Truss element most closely mimics the dashpot’s single degree of freedom behavior,
and may be the best definition for domain decomposition tools.
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Caution should be exercised when using dashpots (or any single degree of free-
dom element). The remaining degrees of freedom must be properly account for, or
the system matrices will be singular. There may also be important domain decom-
position issues with dashpots. See section 3.17 for a discussion.

3.21 Hys

The Hys element provides a simple, one dimensional approximation of a joint going
through microslip. Many simple joints can be represented by their hysteresis loop, a
curve in the displacement vs. force plane. The relevant parameters of this element
are indicated in the table, and illustrated in Figure 4.

# Keyword Description
1 Kmax maximum slope of f vs u curve
2 Kmin minimum slope of f vs u curve
3 fmax maximum possible force
4 dmax maximum possible displacement

The fmax, dmax pair define the limits of applicability of the element. The
element will fail if the internal force exceeds fmax or the displacement exceeds
dmax. The slope of the curve at the origin is kmax. It represents the small am-
plitude response of the system. The slope at the extremum, i.e. at (dmax,kmax)
is kmin.

A Hys element uses a Beam or truss element in the exodus file. At the current
time, the element may only be defined in the X direction. An example of the salinas
input is shown below.

BLOCK 2
Hys
Kmax 4.5e+7
Kmin 3.0e6
fmax 5.92
dmax 0.9833e-6

END

3.22 Shys

A Shys is the whole joint model developed by Smallwood and is an element which
uses a Beam or truss element in the exodus file. The element is a 2.5 dimensional
element with an Shys element in both the X and Y directions and a linear spring
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Figure 4: Hys element parameters
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element in the Z direction. The Shys element is assumed identical in both the X
and Y directions in this formulation. A coordinate system can be defined to orient
the element correctly. An example of the Salinas input is shown below.

# Keyword Description
1 n Exponent describing slope of force-dissipation

curve at very small amplitudes
2 k Linear stiffness of Smallwoods element
3 kNL Coefficient for non-linear stiffness
4 kz Linear translational stiffness in the Z direction
5 k r Linear rotational stiffness (optional, default = 0)

The Shys element does not use the attributes defined in the exodus file for
default values of the optional parameters. A detailed discussion of the theory of
the Shys element as well as how to determine the parameters can be found in the
reports by Smallwood (Ref. 10).

BLOCK 2
shys
coordinate 2
n = 1.39
k = 1.3167e6
kNL = 1.8499e6
k_z = 1.6e6
k_rot = 1.e9

END

3.23 Iwan

A Iwan element uses a Beam or truss element in the exodus file. The element is a
2.5 dimensional element with an Iwan element in both the X and Y directions and
a spring element in the Z direction. The Iwan element is assumed identical in both
the X and Y directions in this formulation. A coordinate system can be defined to
orient the element correctly. An example of the Salinas input is shown below.
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# Keyword Description
1 chi Exponent describing slope of force-dissipation curve at very small amplitudes
2 R Constant coefficient in distribution
3 phi max Maximum break free psuedo-force
4 S Strength of singularity in break free force distribution
5 alpha Geometric factor specifying nonuniform spacing of dphi (optional, default = 1.2)
6 N elem Number of slider elements (optional, default = 50)
7 k z Linear translational stiffness in the Z direction
8 k r Linear rotational stiffness (optional, default = 0)

The Iwan element does not use the attributes defined in the exodus file for default
values of the optional parameters. A detailed discussion of the theory of the Iwan
element as well as how to determine the parameters can be found in the reports by
Segalman (Ref. 11).

BLOCK 2
iwan
coordinate 2
chi = -0.58
R = 585779.
phi_max = 0.00072925
S = 671264.
k_z = 1.6e6
k_rot = 1.e10

END

3.24 Gap

Gap elements are modeled after the non-adaptive nastran CGAP/PGAP elements.
They are intended to provide a simple, penalty type element suitable for model-
ing simple connections. Note that these elements (like all beam-like elements) when
embedded in solid meshes can result in difficult domain decompositions, and lead
to load imbalance.

The Gap element is inherently nonlinear. In linear analysis, the element behaves
approximately like a spring with the stiffness determined by KL and a transverse
stiffness, KT. The parameters of the element are listed in the table below and shown
graphically in Figure 5.
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# Keyword Description
1 KU unloaded stiffness
2 KL loaded stiffness
3 KT transverse stiffness
4 U0 initial gap opening
5 F0 Preload, i.e. force at U0
6 coordinate Required coordinate frame.

The unloaded stiffness, KU, represents the stiffness of the element when the gap is
open. It must be greater than zero. The loaded stiffness, KL, represents the stiffness
when the gap is closed (as shown in the figure). The stiffness is KL when UA - UB
is greater than U0.

The initial gap opening and preload define the corner point in the force/deflection
curve as shown in Figure 5. Typically these will be zero.

A gap element provides for transverse stiffness and friction. If the gap is open,
there is no shear force. When the gap is closed, the transverse stiffness is KT. In
the future, frictional forces will be added.

The coordinate frame is a required attribute of the gap element. The gap open
and closes along the X axis of the frame.

The gap element is a simple penalty type element that somewhat mimics the
effect of a physical gap. Choice of the value of KL is very important to success of
the element. Good values are somewhat in the range of the neighboring element
stiffness. Too large a value can lead to matrix condition problems. Too small a
value results in excessive softness and penetration in the gap.

Because the element is nonlinear, it has a significant impact on solutions. The
current nonlinear solver performs a partial Newton iteration. This means that the
tangent stiffness matrix is not updated between iterations. Thus, if KL and KU are
quite different, the solver will be using the wrong slope in the newton loop. Many,
many iterations may be required for convergence. You may want to turn on the
’timing’ option in the echo section (see 2.5) which will put convergence information
into the results file.

An example is shown below.

BLOCK 2
GAP
KL 4.5e+7
KU 3.0e6
KT=1e6
f0 5.92
u0=0.9833e-6
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coordinate 5
END
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Figure 5: Gap element Force-Deflection Curve

3.25 MPC

Multi-Point Constraints (or MPCs) are constraint equations applied directly to
the stiffness matrix. They are not elements, and are not available from an Exodus
database. However, in many respects they look like elements, and can be thought
of as elements. Some analysis codes treat them as pseudo elements.

All MPCs describe constraint equations of the form,∑
i

Ciui = 0

where Ci is a real coefficient, and ui represents the displacement of degree of freedom
i.

Unlike many Finite Element programs, Salinas does not support user specification
of constraint and residual degrees of freedom (DOF). The partition of constrained
and retained degrees of freedom is performed simultaneously by gauss elimination
with full pivoting so the constrained degrees of freedom are guaranteed to be inde-
pendent. Redundant specification of constraint equations is handled by elimination
of the redundant equations and issue of a warning. User selection of constrained
DOF in Nastran has led to significant headaches for analysts who must insure that
the constrained DOF are independent and never specified more than once.
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Each MPC is specified in the input file with a section descriptor. Note that a
separate section is required for each equation (or degree of freedom eliminated). An
optional coordinate system may be specified on the input, but must be the first
entry in the section. The MPC will be stored internally in the basic coordinate
system (coordinate 0). The input consists of a triplet listing the global ID of the
node, a degree of freedom string, and the coefficient of that degree of freedom. The
degree of free strings are x, y, z, Rx, Ry, Rz. They are case insensitive.

In the following example, the x and y degrees of freedom in coordinate system 1 are
constrained to be equal for node 4.

MPC
coordinate 1
4 x 1.0
4 y -1.0

END

Note. Constraints are handled in various ways by the linear solvers. In the
serial solver, the dependent degrees of freedom are eliminated before the matrices
are passed to the solver. In parallel, we use lagrange multipliers to handle the
constraints. There is currently no user control of constraint handling methods.

Note also that there are practical differences between rigid elements (described
in the following sections) and constraint equations that are nominally identical.
For parallel solutions, we are currently using an augmented lagrange type solution
method with the rigid links. This means that terms are added to the stiffness matrix
in parallel with the constraints. In most cases, this renders the matrices positive
definite, and greatly increases robustness and solution performance with no penalty
for accuracy. Thus, rigid links (except RBE3s) are recommended whenever possible
in parallel solutions.

Finally note that replacing rigid links with very stiff beams can be a bad thing
to do. The condition of the resulting matrices can be severely degraded which can
lead to significant loss of accuracy.

3.26 RROD

An RROD is a pseudoelement which is infinitely stiff in the extension direction.
The constraints for an RROD may be conveniently stated that the dot product
of the translation and the beam axial direction for a RROD is zero. There is one
constraint equation per RROD.

The RROD is specified using beams or trusses in the Exodus database, with a
corresponding Block section in the salinas text input file. No material is required
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and any number of connected or disconnected RRODs may be placed in a block.
The following is an example of the input file specification for RRODs if the Exodus
database contains beams in block id=99.

Block 99
RROD

END

3.27 RBar

An RBAR is a pseudoelement which is infinitely stiff in extension, bending and
torsion. The constraints for an RBAR may be summarized as follows.

1. the rotations at either end of the RBAR are identical,

2. there is no extension of the bar, and

3. translations at one end of the bar are consistent with rotations.

The RBAR is specified using beams or trusses in the Exodus database, with
a corresponding Block section in the input file. No material is required and any
number of connected or disconnected RBARs may be placed in a block. The
following is an example of the input file specification for RBARs if the Exodus
database contains beams in block id=99.

Block 99
RBAR

END

3.28 RBE2

Salinas has no support for the Nastran RBE2 element. However, in most cases
there is little difference between the RBE2 element and a collection of RBARs.

3.29 RBE3

The RBE3 pseudo-element’s behavior is taken from Nastran’s element of the same
name. Note however, that the precise mathematical framework of the Nastran
RBE3 element is not specified in the open literature. This element should act like
a Nastran RBE3 for most applications. The element is used to apply distributed
forces to many nodes while not stiffening the structure as an RBE2 or RBAR
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would. The RBE3 uses the concept of a slave node. Constraints are specified as
follows.

1. The translation of the slave node is the sum of translations of all the other
nodes in the element.

2. The rotation of the slave node is the weighted average rotation of all the other
nodes about it.

Because all the nodes in an RBE3 are not equivalent, each RBE3 requires its own
block ID. In the Exodus file, all links connecting to a single RBE3 are defined in
a single element block. The input file then specifies that this is an RBE3 element
block, as shown in the example below. If the model requires many RBE3s, a
separate block will need to be specified for each.

Note: care must be taken to insure that only one node of the RBE3 has multiple
connections to its links. Further, all links in the RBE3 must be connected to the
slave node.

The following is an example of the input file specification for an RBE3 if the
Exodus database contains beams in block id=99.

Block 99
RBE3

END

3.30 Dead

A dead element has no mass and no stiffness. It may be of any dimensionality,
solid, planar, line or point. Interior nodes to a block of Dead elements will not
be included in the computation of the model. There are no parameters for Dead
elements.
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4 Stress/Strain Recovery

Stresses and strains are recovered at the centroids of the finite elements using stan-
dard finite element procedures. Stress and strain recovery is not implemented for
1-D elements. The stresses/strains calculated for shell elements are calculated in
element space and not global space.
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A Salinas Example Input Files

The following sections give examples of Salinas input files. Note, case sensitivity of
the keywords is ignored unless in quotes. The exception is the #include command,
where the filename following the command must not be in quotes, but case sensitivity
is preserved.

A.1 An Eigenanalysis Input File

The following input file will output the first four mode shapes to an Exodus output
file name hexplate-out.exo. A results file, hexplate.rslt, will not be created since no
results have been selected for output in the ECHO section.

SOLUTION
eigen
nmodes 4
title ’Obtain First Four Mode Shapes For Hexplate’

END

// The f.e.m. is in hexplate.exo
FILE

geometry_file ’hexplate.exo’
END

BOUNDARY
nodeset 77

fixed
END

LOADS // loads are unnecessary for eigenanalysis
END

// Only deformations will be output
OUTPUTS
// maa
// kaa
// faa

deform
// stress
// strain
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END

// No results are output to the text log file, *.rslt
ECHO
// MATERIALS
// ELEMENTS
// JACOBIAN
// ALL_JACOBIANS
// TIMING
// MESH
// mass
// INPUT
// NODES
// FETI_INPUT
// DISP
// STRAIN
// STRESS
// MFILE
none
END

// the following element block is hex.
// exodus tells us it is an 8-node hex.
// The default hex is an underintegraged hex.
BLOCK 44

material 3
hex8

END

MATERIAL 3
name "steel"
E 30e6
nu .3
density 0.288

END
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A.2 An Anisotropic Material Input File

The following input file is an example of a hexahedral mesh with anisotropic prop-
erties.

SOLUTION
eigen
title ’Example of anisotropic format’

END

FILE
geometry_file ’anisogump.exo’

END

boundary
nodeset 4 y = 0
nodeset 5 x = 0
nodeset 6 z = 0

end

loads
// sum of forces on surface should be equal to area
// imposed forces are additive
nodeset 1 force = 0.0 0.083333 0.0
nodeset 2 force = 0.0 -0.041666 0.0
nodeset 3 force = 0.0 -0.020833 0.0

end

OUTPUTS
// maa
// kaa
// faa

deform
// stress
// strain
END

ECHO
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// MATERIALS
// ELEMENTS
// JACOBIAN
// ALL_JACOBIANS
// TIMING
// MESH
// mass
// INPUT
// NODES
// FETI_INPUT
// DISP
// STRAIN
// STRESS
// MFILE
none
END

// the following element block is all hex
BLOCK 1

hex8
material 1

END

MATERIAL 1
name "anisotropic gump"
anisotropic
Cij
1.346 0.5769 0.5769 0 0 0

1.346 0.5769 0 0 0
1.346 0 0 0

0.3846 0 0
0.3846 0

0.3846
density 1

END
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A.3 A Multi-material Input File

The next example shows the input for an Exodus model with many element blocks
and materials. Keyword lumped in the SOLUTION section causes Salinas to
use a lumped mass matrix instead of a consistent mass matrix.

SOLUTION
eigen
nmodes 1
titile ’Multiple block, multiple material example’
lumped

END

FILE
geometry_file ’multi.exo’

END

BOUNDARY
nodeset 1
fixed
nodeset 3
x = 0
y = 0
z = 0
RotY = 0
RotZ = 0

END

OUTPUTS // output only displacements to exodus file
deform

END

ECHO
none

END

// element block specifications. One such definition per element
// block in the exodus (genesis) database.
BLOCK 1
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material 2
Beam2

END

BLOCK 101
integration full
wedge6
MATERIAL 1

END

BLOCK 2
material 2

END

BLOCK 102
integration full
wedge6
MATERIAL 2

END

BLOCK 3
material 3

END

BLOCK 103
integration full
wedge6
MATERIAL 3

END

BLOCK 4
material 4

END

BLOCK 104
integration full
wedge6
MATERIAL 4

END
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BLOCK 5
material 5

END

BLOCK 105
wedge6
integration full
MATERIAL 5

END

BLOCK 6
material 6

END

BLOCK 106
wedge6
integration full
MATERIAL 6

END

// material specifications. Extra materials are acceptable, but
// every material referenced in a necessary "Block" definition,
// must be included here.
MATERIAL 1

name "Phenolic"
E 10.5E5
nu .3
density 129.5e-6

END

Material 2
name ’Aluminum’
E 10.0E6
nu 0.33
density 253.82e-6

END

Material 3
name ’foam’



102 A SALINAS EXAMPLE INPUT FILES

E 100.
nu 0.3
density 18.13e-6

END

Material 4
name ’HE’
E 5E5
nu 0.45
density 129.5e-6

END

material 5
name ’Uranium’
E 30e6
nu 0.3
density 1768.97e-6

end

material 6
name ’wood’
E 200.e3
nu .3
density 77.7e-6

end
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A.4 A Modaltransient Input File

The next example shows the input for a modaltransient analysis. Accelerations
are output to an Exodus file bar-out.exo. This example has damping, polynomial
and linear functions. Also, sensitivities are calculated.

SOLUTION
modaltransient

nmodes 10
time_step .000005
nsteps 100
nskip 1
title ’Test modal transient on prismatic bar’

END

FILE
geometry_file ’bar.exo’

END

ECHO
// acceleration
END

OUTPUTS
acceleration

END

BOUNDARY
nodeset 1

fixed
END

DAMPING
gamma 0.001

END

BLOCK 1
material 1

END
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MATERIAL 1
name "aluminum"
E 10e6
nu .33
density 2.59e-4

END

LOADS
nodeset 3
force = 1. 1. 1.
function = 3

END

FUNCTION 1
type LINEAR
name "test_func1"
data 0.0 0.0
data 0.0150 0.0
data 0.0152 1.0
data 0.030 0.0

END

FUNCTION 3
type LINEAR
name "white noise"
data 0.0 1.0
data 0.0001 1.0
data 0.0001 0.0
data 1.0 0.0

END

SENSITIVITY
vectors all

END
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A.5 A Modalfrf Input File

The next example shows the input for a modalfrf analysis. Accelerations are
output to an Exodus file bar-out.frf.

SOLUTION
modalfrf

nmodes 10
title ’Test modalfrf on prismatic bar’

END

FILE
geometry_file ’bar.exo’

END

frequency
freq_min 0
freq_step=10
freq_max=3000
nodeset 3
disp

END

ECHO
// acceleration
END

OUTPUTS
acceleration

END

BOUNDARY
nodeset 1

fixed
END

DAMPING
gamma 0.001

END
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BLOCK 1
material 1

END

MATERIAL 1
name "aluminum"
E 10e6
nu .33
density 2.59e-4

END

LOADS
nodeset 3
force = 1. 1. 1.
function = 3

END

FUNCTION 2
// this is a smooth pulse with time duration .05
// it peaks at approximately t=.02 sec with a
// value of 0.945
type POLYNOMIAL
name "poly_fun"
data 0. 0.
data 2.0 -8.0e2
data 0.5 8.9443

END

FUNCTION 3
type LINEAR
name "white noise"
data 0.0 1.0
data 10000. 1.0

END

SENSITIVITY
vectors all

END
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A.6 A Directfrf Input File

The next example shows the input for a directfrf analysis. Displacements are
output to an Exodus file bar-out.frf.

SOLUTION
directfrf
END

Frequency
freq_min = 1000.0
freq_step = 7000
freq_max = 5.0e4
disp
block 1

End

FILE
geometry_file ’bar.exo’

END

OUTPUTS
disp
END

ECHO
//
none
END

BOUNDARY
nodeset 1

fixed
END

BLOCK 1
material 1

END
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MATERIAL 1
name "aluminum"
G 0.8E+9
K 4.8E+9
density 2.59e-4

END

LOADS
sideset 1
pressure = -1.0

END
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A.7 A Statics Input File

The following example is a statics analysis which will output stresses to the Exo-
dus output file quadt-out.exo.

SOLUTION
statics
title ’10x1 beam of quadt’

END

FILE
geometry_file ’quadt.exo’

END

BOUNDARY
nodeset 1
fixed

END

LOADS
nodeset 2
force = 1000.0 1000.0 0.0

END

OUTPUTS
stress

END

ECHO
none

END

// the following element block is quadt
BLOCK 1

material 1
QuadT

END

MATERIAL 1
name "steel"
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E 30.0e6
nu 0.25e0
density 0.7324e-3

END



111

B Running Salinas on serial UNIX platforms

On serial unix platforms, Salinas is run with a single argument, the ASCII input
file.

salinas example.inp

The log file will be written to example.rslt if outputs have been specified in the
ECHO section. If outputs have been specified in the OUTPUTS section, a new
exodus file will be generated. The file name is derived from the geometry file
specified in the ASCII input (see section 2.9).

Visualization of the exodus output results can be accomplished using a va-
riety of seacas codes. This includes blot (for models with supported element
types). Commercial software with exodus preferences is also available. These in-
clude MSC/Patran and EnSight. For more information, contact the authors.
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C Running Salinas in Parallel

This appendix gives an example of how to perform an analysis on the Intel Teraflop
(janus) using Salinas. This implies that the execution of Salinas will be in parallel.
There is some overhead to running in parallel versus serial. Assuming a Salinas
text input file exists and an Exodus file exists which contains the finite element
model, the following steps are needed.

1. Decide on how many processors, nproc, are needed.

2. Create an input file for nem slice. The partition software can be executed on
a workstation to create a load balance file. The name of this file is specified
in the input file for nem slice, and usually has a .nem extension.

3. Create your workspace on janus on /scratch/tmp ?? - where ?? is (currently)
your choice of 1 thru 10.

4. Move the Salinas input file, Exodus file, and load balance file to your work
space on janus.

5. Create an input file for nem spread. Execution of nem spread (on janus)
with this input will create nproc Exodus files from the master Exodus file
and move them to the locations specified in the nem spread input file.

6. Modify the FILE section of the Salinas input file to agree with the number of
RAID disks available and the location of the subdomain Exodus files created
by nem spread.

7. Modify the ECHO section in the Salinas input file using the keyword sub-
domain to indicate which processors should produce text results files. Having
all processors output text results files is very slow for large models.

8. Use the yod command to run Salinas in parallel.

9. Create an input file for nem join to join your results back into one Exodus
output file.

Each step is detailed in the following paragraphs. Additional information on parallel
execution can be found at http://jal.sandia.gov under the SEACAS documentation
link.
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C.1 Number of Processors Needed

Running Salinas in parallel requires the user to specify how many processors at a
minimum are needed in order to “fit” the problem into available memory on janus.
For most applications running om compute nodes with 128MB per node, a good
rule of thumb is to have approximately 2000 elements/processor. If a finite element
model has 1,000,000 elements, use 500 processors.

C.2 Using Nem slice to load balance the model

An example of a nem slice input file is, e.g. junk slice.inp,

Graph Type = elemental
Decomposition Method = multikl,cnctd_dom
Input ExodusII File = junk.exo
Output NemesisI File = junk.nem
#Solver Specifications
Machine Description = mesh=500
Misc Options = face_adj
#Weighting Specifications

This input file will create a load balance file, junk.nem, for running Salinas on 500
processors. Note, the face adj option is useful for 3-d models to prevent mecha-
nisms from appearing in the decomposed subdomains and is highly recommended
for optimal performance.

To create the load balance file, junk.nem, simply type

prompt> nem_slice -a junk_slice.inp

The load balancing software, nem slice, is typically executed on a serial machine
such as a workstation. More detailed information on nem slice is available at
http://jal.sandia.gov under the link to the SEACAS documentation.

C.3 Janus Work Space

To run Salinas in parallel, work space on janus is needed. On the /scratch space
on janus, there are 10 temp directories. Simply choose one, and make a directory
using your username, as follows.
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janus> cd /scratch/tmp_1
janus> mkdir $USER

After the work space on janus is set up, move the Salinas input file, Exodus file,
and load balance file (junk.nem) to it.

C.4 Using Nem spread

The load balanced Exodus database must be “spread” to nproc mini-databases.
Each processor reads from its own data file. An example nem spread input file is,
e.g. junk spread.inp.

Input FEM file = junk.exo
LB file = junk.nem
Debug = 4
------------------------------------------------------------

Parallel I/O section
------------------------------------------------------------
Parallel Disk Info = number=18
Parallel file location = root=/pfs_grande/tmp_, subdir=username

Here, username must be replaced by the name of the user.

The Exodus file and the load balance file need to be defined in the nem spread
input file. There are 18 RAID disks currently available on janus. These are the
number of disks available to which input/output can be performed in parallel. The
FILE section in the Salinas input file needs to have the number of raids defined
using the keyword numraid. Therefore, for janus, numraid 18, must appear in
the Salinas input file. This number must match the parallel disk info line in the
nem spread input file.

If running for the first time on janus, proper directories must be established on the
RAID disks. Currently, the raids are setup at /pfs grande/tmp ?? where ?? is a
number between 1 and 18 ( 18 raids ). A few csh shell commands can make the
required directories.

janus> foreach i (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)
foreach? mkdir /pfs_grande/tmp_$i/$USER
foreach? end
janus>
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To execute nem spread,

janus> /cougar/bin/yod -sz 4 nem_spread junk_spread.inp

This execution of nem spread will spread nproc Exodus files onto the RAID disks
specified in the input file for nem spread. This location must also be specified in
the FILE section of the Salinas input file as follows, assuming your load balance
file is junk.nem created for 500 processors,

FILE
geometry_file ’/pfs_grande/tmp_%d/username/junk.par.500.%.3d’
numraid 18

END

The “%d” after tmp is used in Salinas in conjunction with the number of RAIDs
available. The “%.3d” at the end of the line for the geometry file is used in
conjunction with how many processors the load balance file was created with. The
following table shows what must be used after junk.par.nproc for various processors
requested.

Condition Use this
nproc<10 “%.1d”

10≤nproc<100 “%.2d”
100≤nproc<1000 “%.3d”

1000≤nproc<10000 “%.4d”

Since nem spread is a parallel code, yod must be used to execute it, using the
-sz option to specify how many processors are needed. This number need not agree
with the number of processors for execution of the analysis. Typically no more than
20 processors would be used to spread files. The showmesh utility can be used to
indicate the number of interactive processors available.

C.5 Salinas FILE Section

If a load balance file junk.nem is created for execution of Salinas for 500 processors,
and the number of raids is 18, then the FILE section of the Salinas input file must
look like the following.

FILE
numraid 18
geometry_file ’/pfs_grande/tmp_%d/username/junk.par.500.%.3d’

END
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C.6 Running Salinas

Once the necessary setup has been done, and a parallel Salinas code exists in your
work space, then

janus> cd /scratch/tmp_1/$USER
janus> yod -sz 500 salinas junk.inp

This will run Salinas in parallel on 500 processors using the input file junk.inp.
In practice, only a small number of processors are available interactively on

janus. To use a larger number of processors, the NQS queuing system must be
used. Help is available under the man pages on janus under the topics qsub and
qstat. To submit an NQS submission, create a small shell script, such as the
following.

janus> cat run_it
#!/bin/sh
date
cd /scratch/tmp_1/$USER
yod -sz 500 salinas junk.inp
date

The NQS job is submitted using qsub with a command such as the following.

/usr/bin/qsub -lT 90:00 -lP 500 -q snl.day -me run_it

This command submits a 90 minute run using 500 processors to the queue snl.day.
A message will be mailed to you when the run has completed, and output from stan-
dard out and standard error will be found in files in your working directory. Status
of your run can be obtained using qstat. Status of all NQS submissions is available
with qstat -a or qstat -av. Contact janus-help@sandia.gov for information on
queueing policies and options.

C.7 Using Nem join

Once the analysis run has been completed, the output exodus files will need to be re-
combined into a single file for visualization and processing. Nem join accomplishes
this process. A Nem join input file is very similar to the nem spread input file.
An example input file is, e.g. junk join.inp.
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Input FEM file = junk.exo
Scalar Results FEM file = junk-out.exo
Use Scalar Mesh File = yes
Parallel Results file base name = junk-out.par
Number of processors = 500
Debug = 4
------------------------------------------------------------

Parallel I/O section
------------------------------------------------------------
Parallel Disk Info = number=18
Parallel file location = root=/pfs_grande/tmp_,subdir=username

To run nem join, simply do the following:

janus> yod -sz 4 nem_join junk_join.inp

This will create a file junk-out.exo in your current directory by combining all the
Exodus output files located on the RAID disks. This is a standard exodus file
which may be visualized and processed using serial tools.
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D Trouble Shooting FETI Issues

D.1 Introduction

The Finite Element Tearing and Interconnecting (FETI) solver achieves unprece-
dented speed and scalability on massively parallel computers. However, it is sig-
nificantly more complex than a standard direct solver. We discuss a number of
the options associated with the solver in the following sections. These options are
required to achieve three sometimes-competing goals.

1. Insuring that there is sufficient memory to run on the MP platform.

2. Obtaining the current solution through correct rigid body (or zero energy)
identification on the subdomain and on the coarse grid.

3. Tuning the solver to maximize performance.

D.2 Standard FETI Block

FETI
rbm geometric
preconditioner dirichlet
corner_algorithm 1
corner_dimensionality 6
corner_augmentation none
max_iter 200
orthog 1000
solver_tol 1e-6
grbm_tol 1e-6
coarse_solver sparse
local_solver sparse
precondition_solver sparse
prt_summary yes
prt_rbm yes
prt_debug 2

END

D.3 Memory

The FETI options that directly affect memory usage are listed in the following
table. Memory is directly related to the “size” of a subdomain. The number of
elements associated with a subdomain can approximately measure the “size”. The
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topology or connectivity of those elements also directly affects the memory since
this determines the local sparse matrix structure.

Large memory allocations occur in the following order with the relative im-
portance listed in parentheses. These operations are only done once for linear
static/dynamic and eigen analysis in Salinas.

1. Preconditioner (3)
2. Local Solver (2)
3. Coarse Grid (1)
4. Orthog vectors (4)

D.3.1 Preconditioner

The lumped preconditioner requires less memory but generally does more iterations
than the dirichlet preconditioner which requires more memory. The precondition solver
option only affects the memory if the Dirichlet preconditioner is selected. Then the
comments in the Local Solver section also apply.

D.3.2 Local Solver

The skyline solver typically takes more memory than the sparse solver. For small
problems (less than 1000 equations), the skyline solver may require less memory
than the sparse solver. Generally the skyline solver is the more robust option par-
ticularly when the solution may be singular (i.e. eigenvalue analysis on a floating
structure).

D.3.3 Coarse Solver

The corner algorithm, corner dimensionality, corner augmentation, and coarse solver
options affect the coarse grid memory requirements. The number of equations in the
coarse grid can be found in the solution.data file. Reducing the number of equations
in the coarse grid reduces the memory required by the coarse grid.

If your model has shell elements, then corner dimensionality 6 results in more
memory than corner dimensionality 3. If your model does not have shells, then this
option will not affect memory. Corner dimensionality 6 is generally required for
good performance on shell models.

Corner algorithm memory requirements are model dependent and are directly
related to the interface topology of the decomposed global model. Typically, corner
algorithm 0 results in the smallest coarse grids. This is also the least robust corner
algorithm. Corner algorithm 3 is the most conservative corner algorithm and typi-
cally generates larger coarse grids. It is recommended to start with corner algorithm
1. If problems arise, change to corner algorithm 3.
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Both the skyline and sparse coarse grid solvers are redundantly stored on every
processor. The same comments about the skyline and sparse solvers found in the
Local Solver section apply here too. The parallel sparse (psparse) solver distributes
the coarse grid memory among Ns coarse solver processors. Very large coarse grids
can be used with this option. If there are any problems found with the parallel
sparse solver, please contact me at khpiers@sandia.gov.

D.3.4 Orthogonalization (Ortho) Vectors

The number of ortho vectors directly affects the memory requirements of FETI-DP.
Generally, you want to select as many ortho vectors as possible given the memory
limitations. Ortho vectors decrease the number of iterations required for successive
right hand side vectors (eigen/dynamic analysis).

D.3.5 Options that Affect Memory

FETI
preconditioner [lumped/dirichlet]
precondition_solver [skyline/sparse]
orthog 200
local_solver [skyline/sparse]
coarse_solver [skyline/sparse/psparse]
corner_dimensionality [3/6]
corner_algorithm [0,1,2,3,4]
corner_augmentation [none/subdomain/edge]

END

D.4 Local Rigid Body Modes

Local rigid body modes (RBMs) refer to the local subdomain stiffness matrix having
singularities found during the LDLT factorization and in general the solution will
be corrupted if local RBMs are found. The command “prt rbm yes” in the FETI
block will print the number of local RBMs found for each subdomain in your model.
Each subdomain is expected to have zero local RBMs. The following steps can be
taken if you find a subdomain with a non-zero number of local RBMs.

1. Reduce the tolerance used in the LDLT factorization, For example, the default
value for “rbm tol mech” is 1.0E-08, then try “rbm tol mech 1.0E-12”

2. If this does not remove the local RBMs, then try changing the corner algorithm
while holding the previously set tolerance constant. The recommended and



122 D TROUBLE SHOOTING FETI ISSUES

default algorithm is 1. If corner algorithm 1 fails to remove the local RBMs,
then try corner algorithm 3.

3. If you have shell elements in the model (and more specifically in the subdomain
you have found local RBMs), then “corner dimensionality 6” may be required.

4. If you still have local RBMs, contact me at khpiers@sandia.gov and I’ll be
happy to look at your specific problem.

D.5 Global Rigid Body Modes

Global rigid body modes (RBMs) refer to the global stiffness matrix having singu-
larities present. Finding 6 RBMs for a 3D model is expected when performing an
eigen analysis with Salinas and the global model does not have any prescribed dis-
placement boundary conditions. FETI-DP can handle this case, but in many cases
tolerances have to be adjusted for a particular model.

Finding the incorrect number of RBMs can lead to either stagnation in the
FETI solution or the dreaded “relative residual greater than 1” error in Salinas.
Troubleshooting this problem can be done in the following fashion.

1. First, determine the expected number of RBMs in your model. Typically in
eigen analysis, this is zero (fully constrained), three (2D-floating), or six (3D-
floating). The number of RBMs is expected to be zero for transient dynamics.

2. Next, determine how many you are finding with the FETI parameters you
have selected. The number of global RBMs are printed to the screen during
a Salinas run and printed to the solution.data file. Executing the following
UNIX command will find the number of global RBMs found during the last
Salinas run. grep “Global RBM” solution.data

3. The parameter “grbm tol 1.0E-06” will have to be adjusted to find the ex-
pected number of RBMs in your model.

4. Decrease grbm tol if you want to find less global RBMs.

5. Increase grbm tol if you want to find more global RBMs.

6. For eigen analysis, you may want to use a negative shift (in the Salinas SOLU-
TION block). Use a shift value equal to the negative of the first anticipated
flexible eigenvalue, i.e. (2πf)2. This should eliminate all global RBMs, but
may slow the solution.

7. If you still have problems with global RBMs, please contact me at khpiers@sandia.gov
and I will be happy to help resolve the problem.
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